

Version 5.3.0 Revision F

A product from

Toldbodgade 95
DK-1253 Copenhagen K

Denmark
Phone: +45 7022 0495
Fax: +45 7023 0495

SE/VAT No. DK-27 06 03 07
www.easygui.com

sales@ibissolutions.com

Copyrighted © 1999 - 2007 IBIS Solutions ApS.

http://www.easygui.com/
mailto:sales@ibissolutions.com

CONTENT

1 PREFACE .. 12

2 INSTALLATION .. 13
Installation ... 13
easyGUI licensing .. 13

3 INTRODUCTION... 15
How does it work? ... 15
The display ... 16
Menus.. 17

File functions ... 18
Font functions.. 18
Project functions .. 19
C code generation .. 19
Import / export.. 19
Help functions.. 19

4 FONTS ... 20
Font types .. 20
Character modes ... 20
Text fonts... 21

Character definition .. 22
Proportional writing .. 24
Font style.. 26
Undefined characters .. 26

Font compression .. 27
Current fonts .. 27

5 FONT LIST WINDOW .. 29

6 FONT EDITING WINDOW .. 30
Font setup .. 31
Font selection ... 33

Previously in easyGUI ... 34
View filter ... 34

Font editing .. 35
Pixel editing .. 35
PS mark editing ... 35
Editing many characters at once..................................... 36
Editing commands.. 36

TTF import.. 38

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 4

Character testing... 39

7 PROJECT PARAMETERS WINDOW ... 41
Basics .. 42

Project panel ... 42
Display panel... 42

Display controller... 45
Color ... 47

Colors panel .. 47
Color / Grayscale mode panel .. 48
Color depth panel... 48

Palette handling .. 58
Color handling .. 62
RGB format .. 63

Simulated display .. 65
Compiler .. 66

Type definitions panel ... 67
Constant declarations panel ... 67
Special compiler settings panel 68
Buffer sizes panel... 68

Operation ... 69
Text setup panel .. 69
Auto redraw panel .. 70
Cursor mode panel ... 70
Scroll mode panel... 70
Module selection panel .. 70

8 LANGAUGE TRANSLATION WINDOW....................................... 72

9 POSITIONS WINDOW ... 75

10 VARIABLES WINDOW ... 76
Importing definitions.. 77

Import setup ... 77
Import type.. 78

Making the import .. 80

11 STRUCTURES WINDOW .. 81
The basics .. 81
Items... 81
Window layout .. 83
Structure management panel .. 84
Item list panel... 86
Item data panel... 87

Structure hierarchy sub-panel .. 87
Primary position sub-panel .. 87

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 5

Secondary position sub-panel .. 88
Structure call sub-panel .. 88
Variable sub-panel ... 88
Active area sub-panel ... 89
Clipping sub-panel.. 89
Touch area sub-panel ... 89
Alignment sub-panel... 89
Foreground color sub-panel ... 90
Background color sub-panel... 90
Text sub-panel... 91
Paragraph sub-panel... 93
Bitmap sub-panel ... 94
Rectangle sub-panel ... 94
Variable formatting sub-panel .. 94
Miscellaneous sub-panel.. 95

Display panel .. 97
Use of Touch areas ...104

1 - Touch interface hardware104
2 - Coordinate training..105
3 - Event handling..106

12 C CODE GENERATION ...108

13 IMPORT / EXPORT...110
Current project panel ..111
External project panel ...111
Middle panel - controls and settings113

14 HOW TO SET UP YOUR SYSTEM ..114
Minimum RAM and ROM requirements114
Operating system ...114
Setting up the system for easyGUI use115

1 - Physical display connection115
2 - Setting up easyGUI for your display type116
3 - Display control functions ...117

Display initialization..118
Selecting a display driver...118
Display writing...126
Light and contrast control..129

4 - Compiling the project..129
5 - easyGUI interfacing ..129

GuiLib_Init ..130
GuiLib_Refresh ..130
GuiLib_ShowScreen ..131

Testing the system ...131
1 - Establishing some kind of connection131
2 - Turning on a single pixel ...132
3 - Showing the test pattern ...132

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 6

4 - Showing an easyGUI structure135

15 HOW TO UTILIZE easyGUI - A TUTORIAL136
Efficient learning ..136
Item types...136
Viewing the structure ..138
Splash structure ...139

Structure details ...140
Clearing the screen..140
Finding this and that item...141
Drawing a logo ...141
A centered, relative text...142
PS - nice texts ..142
Big texts - small texts..144
Showing variables ...144

Config structure ...146
Structure details ...146
Don't forget the coordinates ...147
Using an indexed structure ...148
Utilizing a disappearing indexed structure151
An on/off text ...152
Backgrounds are important...153
The fine art of cursor fields ...155

Main Menu structure ...158
Better looking menu items..159
Playing with cursor indices..159

Flash structure ...161
Mixing structures and plain graphics161

Let's scroll ...162

16 easyGUI FUNCTION REFERENCE ...167
GuiConst unit ...168

Constants ..168
GuiConst_AUTOREDRAW_FIELDS_MAX......................168
GuiConst_AUTOREDRAW_MAX_VAR_SIZE..................168
GuiConst_AUTOREDRAW_ON_CHANGE......................168
GuiConst_AVR_COMPILER_FLASH_RAM168
GuiConst_AVRGCC_COMPILER169
GuiConst_BIT_BOTTOMRIGHT..................................169
GuiConst_BIT_TOPLEFT...169
GuiConst_BITMAP_SUPPORT_ON169
GuiConst_BLINK_FIELDS_MAX169
GuiConst_BLINK_SUPPORT_ON169
GuiConst_BYTE_HORIZONTAL169
GuiConst_BYTE_LINES ..170
GuiConst_BYTE_VERTICAL.......................................170
GuiConst_BYTES_PR_LINE.......................................170
GuiConst_BYTES_PR_SECTION.................................170

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 7

GuiConst_CHAR ...170
GuiConst_CHARMODE_ANSI170
GuiConst_CHARMODE_UNICODE170
GuiConst_CLIPPING_SUPPORT_ON170
GuiConst_CODEVISION_COMPILER...........................171
GuiConst_COLOR_BYTE_SIZE171
GuiConst_COLOR_DEPTH_1171
GuiConst_COLOR_DEPTH_2171
GuiConst_COLOR_DEPTH_4171
GuiConst_COLOR_DEPTH_5171
GuiConst_COLOR_DEPTH_8171
GuiConst_COLOR_DEPTH_12172
GuiConst_COLOR_DEPTH_15172
GuiConst_COLOR_DEPTH_16172
GuiConst_COLOR_DEPTH_18172
GuiConst_COLOR_DEPTH_24172
GuiConst_COLOR_MAX..172
GuiConst_COLOR_MODE_GRAY172
GuiConst_COLOR_MODE_PALETTE............................172
GuiConst_COLOR_MODE_RGB..................................173
GuiConst_COLOR_PLANES_1....................................173
GuiConst_COLOR_PLANES_2....................................173
GuiConst_COLOR_RGB_STANDARD...........................173
GuiConst_COLOR_SIZE ...173
GuiConst_COLORCODING_B_MASK...........................173
GuiConst_COLORCODING_B_MAX.............................173
GuiConst_COLORCODING_B_SIZE174
GuiConst_COLORCODING_B_START..........................174
GuiConst_COLORCODING_G_MASK174
GuiConst_COLORCODING_G_MAX174
GuiConst_COLORCODING_G_SIZE............................174
GuiConst_COLORCODING_G_START174
GuiConst_COLORCODING_R_MASK...........................174
GuiConst_COLORCODING_R_MAX.............................174
GuiConst_COLORCODING_R_SIZE175
GuiConst_COLORCODING_R_START..........................175
GuiConst_CONTROLLER_COUNT_HORZ175
GuiConst_CONTROLLER_COUNT_VERT175
GuiConst_CURSOR_FIELDS_MAX..............................175
GuiConst_CURSOR_MODE_STOP_TOP175
GuiConst_CURSOR_MODE_WRAP_AROUND................175
GuiConst_CURSOR_SUPPORT_ON.............................176
GuiConst_DECIMAL_COMMA176
GuiConst_DECIMAL_PERIOD176
GuiConst_DISPLAY_ACTIVE_AREA176
GuiConst_DISPLAY_ACTIVE_AREA_CLIPPING176
GuiConst_DISPLAY_ACTIVE_AREA_COO_REL176
GuiConst_DISPLAY_ACTIVE_AREA_X1.......................176
GuiConst_DISPLAY_ACTIVE_AREA_Y1177
GuiConst_DISPLAY_ACTIVE_AREA_X2.......................177
GuiConst_DISPLAY_ACTIVE_AREA_Y2177
GuiConst_DISPLAY_BYTES.......................................177

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 8

GuiConst_DISPLAY_HEIGHT.....................................177
GuiConst_DISPLAY_HEIGHT_HW177
GuiConst_DISPLAY_WIDTH......................................177
GuiConst_DISPLAY_WIDTH_HW178
GuiConst_FLOAT_SUPPORT_ON................................178
GuiConst_FONT_UNCOMPRESSED.............................178
GuiConst_ICC_COMPILER ..178
GuiConst_INT8S...178
GuiConst_INT8U ..178
GuiConst_INT16S...178
GuiConst_INT16U...178
GuiConst_INT24S...179
GuiConst_INT24U...179
GuiConst_INT32S...179
GuiConst_INT32U...179
GuiConst_INTCOLOR...179
GuiConst_ITEM_TEXTBLOCK_INUSE..........................179
GuiConst_ITEM_TOUCHAREA_INUSE.........................179
GuiConst_KEIL_COMPILER_REENTRANT180
GuiConst_LANGUAGE_CNT180
GuiConst_LANGUAGE_XXX180
GuiConst_MAX_TEXT_LEN180
GuiConst_MAX_VARNUM_TEXT_LEN..........................180
GuiConst_MIRRORED_HORIZONTALLY.......................180
GuiConst_MIRRORED_VERTICALLY181
GuiConst_PALETTE_SIZE...181
GuiConst_PICC_COMPILER_ROM181
GuiConst_PIXEL_OFF ..181
GuiConst_PIXEL_ON ...181
GuiConst_PTR..181
GuiConst_REL_COORD_ORIGO_INUSE181
GuiConst_REVERSED_BYTE_PAIRS182
GuiConst_ROTATED90DEGREE182
GuiConst_ROTATED90DEGREE_LEFT182
GuiConst_ROTATED90DEGREE_RIGHT.......................182
GuiConst_ROTATED_OFF ...182
GuiConst_ROTATED_UPSIDEDOWN...........................182
GuiConst_SCROLL_MODE_STOP_TOP........................182
GuiConst_SCROLL_MODE_WRAP_AROUND.................183
GuiConst_SCROLL_SUPPORT_ON..............................183
GuiConst_TEXT ..183
GuiConst_TOUCHAREA_MAX183

GuiLib unit...183
Constants ..184

GuiLib_CHR_SET ..184
GuiLib_NO_CURSOR ...184
GuiLib_NO_RESET_AUTO_REDRAW...........................184
GuiLib_RESET_AUTO_REDRAW.................................184

Variables..184
GuiLib_ActiveCursorFieldNo184
GuiLib_CurStructureNdx..185
GuiLib_LanguageCharSet...185

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 9

GuiLib_LanguageIndex..185
GuiLib_ScrollActiveLine ...185
GuiLib_ScrollTopLine...185
GuiLib_ScrollVisibleLines ...185

Functions ...186
GuiLib_BlinkBoxMarkedItem186
GuiLib_BlinkBoxStart ..186
GuiLib_BlinkBoxStop...187
GuiLib_BorderBox...187
GuiLib_Box..187
GuiLib_Clear..188
GuiLib_ClearDisplay..188
GuiLib_Cursor_Down ..188
GuiLib_Cursor_End ...189
GuiLib_Cursor_Home ..189
GuiLib_Cursor_Select..189
GuiLib_Cursor_Up ..190
GuiLib_Dot ..190
GuiLib_DrawChar ...190
GuiLib_DrawStr..191
GuiLib_FillBox ..193
GuiLib_GetDot ...193
GuiLib_GetTextLanguagePtr193
GuiLib_GetTextPtr ..194
GuiLib_GetTextWidth ..194
GuiLib_GrayScaleToRgbColor194
GuiLib_HLine ...195
GuiLib_Init ..195
GuiLib_InvertBox ...195
GuiLib_InvertBoxStart...196
GuiLib_InvertBoxStop ...196
GuiLib_Line ...196
GuiLib_MarkDisplayBoxRepaint.................................197
GuiLib_PixelToRgbColor...197
GuiLib_RedrawScrollList ..197
GuiLib_Refresh ..198
GuiLib_ResetClipping ..198
GuiLib_ResetDisplayRepaint.....................................198
GuiLib_RgbColorToGrayScale198
GuiLib_RgbToPixelColor...199
GuiLib_Scroll_Down..199
GuiLib_Scroll_End ..199
GuiLib_Scroll_Home..200
GuiLib_Scroll_To_Line...200
GuiLib_Scroll_Up..201
GuiLib_ScrollLineOffsetY..201
GuiLib_SetClipping ...202
GuiLib_SetLanguage ...202
GuiLib_SetScrollPars...202
GuiLib_ShowBitmap..203
GuiLib_ShowBitmapAt...203
GuiLib_ShowScreen ..203

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 10

GuiLib_StrAnsiToUnicode...204
GuiLib_TestPattern ...204
GuiLib_TouchAdjustReset ..204
GuiLib_TouchAdjustSet ...205
GuiLib_TouchCheck ..205
GuiLib_UnicodeStrCmp..205
GuiLib_UnicodeStrCpy...206
GuiLib_UnicodeStrLen ...206
GuiLib_VLine ...206

GuiDisplay unit...207
Functions ...207

GuiDisplay_Init ..207
GuiDisplay_Lock...207
GuiDisplay_Refresh ..208
GuiDisplay_Unlock..208

17 easyTRANSLATE ...209
Installation ..209
Principles...209
How to use ..210

18 easyGUI PC SIMULATION TOOLSET212
Purpose...212
Necessary files ...212
Compilation ...214
Limitations...215

19 easyGUI VERSIONS ..216

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 11

1 PREFACE

Welcome to the easyGUI world of fast and efficient graphical user interface editing.

easyGUI is an application for defining user interfaces on small displays using graphical
primitives.

The use of an SQL database in easyGUI project files ensures maximum stability, speed
and efficiency in the development environment.

This manual covers all versions of the easyGUI package. Sections specific to one or the
other are marked with:

Monochrome for the monochrome version.

Color for the color version.

Unicode所有语言 for the Unicode version.

The color version contains all functionality of the monochrome version, plus support for
more than one bit per display pixel, i.e. color depths of more than two colors. Grayscale
displays are handled just as color displays by easyGUI.

The Unicode version contains all functionality of the color version, plus support for 16 bit
Unicode character codes.

Furthermore, the PC Simulation Toolset, and the easyTRANSLATE accessories, is covered
in this manual.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 12

2 INSTALLATION

easyGUI can be installed on standard PC's running Windows 2000, Windows XP, Windows
Vista, or higher. easyGUI will not function properly on Windows 95, Windows 98,
Windows Me, or similar older operating systems.

INSTALLATION

Run the easyGUI installation program, following the instructions on screen.

Several fonts are required:

• Arial. Should be present in a standard Windows installation.

• Arial Narrow. Is part of e.g. Microsoft Office.

• Arial Unicode MS.

The installation program installs these fonts, if needed. The fonts can also be found in the
Fonts sub folder of the easyGUI install folder.

EASYGUI LICENSING

easyGUI can be licensed in two ways:

• By software license. A temporary software license key is issued when purchasing
easyGUI. When easyGUI is started for the first time it asks for license information.
Enter the user name and temporary license key, as delivered with the package.
easyGUI will now be fully functional for a limited amount of time (typically 14
days). During this period send an E-mail to sales@easygui.com, stating your user
name and hardware ID, as shown on easyGUI’s main window, or in the Help |
License function. You will then receive a permanent license key corresponding to
your user name and your PC’s machine ID. If it is necessary to run easyGUI on
other PC’s, additional licenses must be purchased. In the event of PC equipment
replacements and/or updates, where the hardware ID changes, just contact
support@easygui.com.

• By dongle. This is an extra feature, which can be purchased on the easyGUI web
site. You will still be supplied with a temporary software license key, in order to
get started while waiting for the dongle to arrive by mail. When the dongle is
received it is simply placed in a free USB connector on the PC, and easyGUI is
restarted. easyGUI will then recognize the dongle. The advantage of using a

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 13

mailto:sales@easygui.com
mailto:support@easygui.com

dongle is that easyGUI may be installed on several PC's, and the dongle simply
moved around to the desired PC.

Usually the dongle just works with the drivers found in Windows. If not, the
official HASP dongle driver must be installed. It is located in the dongle folder
under the easyGUI installation folder. It can also be downloaded from the HASP
site at (topmost item):

www.aladdin.com/support/hasp/enduser.asp

No customer problems have been reported after installing the HASP driver.

If you want the highest degree of freedom in using the easyGUI package, we recommend
the dongle license.

The dongle license can also be purchased later to an existing easyGUI installation.

Please observe that purchasing the dongle license does not constitute a second license.
For two licenses two full easyGUI packages must be purchased, with or without dongles.

We offer a discount if purchasing more than three licenses. Please contact
sales@easygui.com if you need multiple licenses.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 14

http://www.aladdin.com/support/hasp/enduser.asp
mailto:sales@easygui.com

3 INTRODUCTION

HOW DOES IT WORK?

The process of development when using easyGUI can be summed up as:

PC application
easyGUI
data files

easyGUI
library

easyGUI
display driver

User
C source code

Compiler
Linker

Finished
application

• The easyGUI PC application is explained in detail in this manual. The major part
of the work regarding the user interface takes place here, contrary to standard
development work, where everything is done in the target system c code.

• The easyGUI data files are generated by easyGUI, at the command of a button.
Each time something has been changed in the user interface, and it is desirable to
test it on the target system (or the PC simulation toolkit) the files must be re-
generated.

• An easyGUI library is delivered with the easyGUI package, in plain c code. This
library must be linked into the target system application, just like the other
modules making up the final system.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 15

• User c source code is the last part of the target system source code, containing
all the working code necessary for the finished system, with calls to the easyGUI
library, and other code related to e.g. hardware in the target system.

This manual describes the various steps necessary to take, in order to use easyGUI as an
efficiently tool for generating high quality user interfaces in embedded systems.

As easyGUI is complex there will of course be a learning curve, as with all other advan-
ced tools, but the reward will be reduced development time, and a better final product,
when the easyGUI tool has been mastered. Take your time, start with simple problems,
and gradually work your way through the system, using more and more advanced
functions, as the needs arise.

THE DISPLAY

easyGUI treats the target system display as a graphical canvas, i.e. a drawing surface on
which objects may be placed. All placement is free, so there is no predefined positions or
grid which limits the artistic freedom.

The coordinate system has origo (0,0) at the upper left corner, with X coordinates going
towards the right, and Y coordinates going downwards. The coordinates are counted in
display pixels, so the display sets the limits for the coordinate system.

There is no formal limit on display size in easyGUI, but the vast majority of systems
using easyGUI have display resolutions of 640×480 pixels (VGA) or lower, with most at
or below 320×240 pixels (quarter VGA).

easyGUI supports any color depth, ranging from simple monochrome systems (one bit
per pixel) all the way up to true color systems (24 bits per color).

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 16

MENUS

easyGUI is controlled through a number of functions, one for each main subject.

One project can be loaded at a time. The project contains all fonts, screen structures,
etc. for one display. If the target system utilizes several different displays a project
should be created for each display. Several displays handled by the same µ-processor is
not supported by easyGUI.

easyGUI contains a number of items:

• Basic file functions.

• Font management.

• Font editing.

• Project parameters.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 17

• Positions.

• Variables.

• Structures (screen designs).

• Language support.

• C-source code generation.

• Import / export of data between easyGUI projects.

The individual items are explained in the following chapters.

File functions

Open - opens an existing project. The ctrl + O command can also be used.

Save - saves changes to the project. The F2 key, or the ctrl + S command, can
also be used.

SaveAs - Saves the project under another name. The ctrl + A command can
also be used.

New - Creates a new project containing only basic data. The ctrl + N command
can also be used.

Close - closes the currently open project. The ctrl + F4 command can also be
used.

 Exit - closes easyGUI. The ctrl + Q command can also be used.

The nine projects last opened are remembered by the system for easy access. They are
presented in the File menu below the commands. Selecting one of them corresponds to
opening it normally with the Open command.

Font functions

Font list - manages complete fonts. The F3 key activates this window.

Font editing - edits a single font, selected in the font list. Manages font
selection for the target system. The F4 key activates this window.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 18

Project functions

Project parameters. Basic settings for the project, defining e.g. display size
and display controller memory layout. The F5 key activates this window.

Language translation - allows definition of languages in the project, and
translation of texts. The F7 activates this window.

Positions - manages fixed positions for screen structures. The F8 key activates
this window.

Variables - manages variables for dynamic screen structure control. The F9
key activates this window.

Structures - the core function in easyGUI. Manages screen structures. The F10
key activates this window.

C code generation

C code generation - converts easyGUI data to c and h files for inclusion in the
target system code. The F11 key activates this window.

Import / export

Import / export - moves data between easyGUI projects. The F12 key
activates this window.

Help functions

 Help - displays this manual. The F1 key can also be used.

About - displays information about the easyGUI program. The ctrl + I command
can also be used.

License - displays license data, allowing license key updating. The ctrl + L
command can also be used. If a working dongle is attached the dongle ID will be
shown.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 19

4 FONTS

FONT TYPES

All characters and icons are organized into fonts. Fonts are divided into text fonts
containing normal characters, and icon fonts containing graphical elements, but internally
all fonts are treated identically. A text font contains one set of characters or icons in one
size, covering one or more languages, e.g. both Western style and Asian style characters
in the same font. All characters (or icons) in a font have the same basic parameters
regarding height, style etc.

Observe that bitmaps can also be displayed by using a bitmap item, this is unrelated to
the fonts, and will be explained later.

Fonts are by definition monochrome.

CHARACTER MODES

There are two fundamental character modes in easyGUI:

• ANSI mode. Each font can contain up to 224 primary characters (character codes
32~255), and up to 224 shadow characters. 8 bit character codes are used on the
target system.

In order to make room for the shadow characters in an 8bit character code
system the characters are organized into two character sets, each containing up
to 224 characters. The primary character set is numbered 0, while the shadow set
is numbered 1. Characters in character set 1 are numbered 256 - 511. The
primary character set contains the normal ANSI Western style character set, as
used in Windows. The shadow character set contains Japanese Katakana
characters as default, but other uses are possible. When the target system code
runs, a language is selected at all times. Each language has a character set
number assigned (defined in language setup, see later). When easyGUI needs to
display a character it first looks in the currently active character set, i.e. No. 0 or
1. If a character is defined in the character set it is displayed, if not easyGUI
displays the corresponding character in character set 0. If no character is found
here either a black block is displayed instead, indicating a font problem. With this
system easyGUI can show more than 256 characters while still using only 8 bit
character codes, but of course all characters in use in character set 1 will mask
out the corresponding characters in character set 0, when character set 1 is
specified for use. Therefore the supplied Katakana characters are placed in the
last part of character set 1, so that the characters “lost” in character set 0 does
not create a problem. These masked out characters are mostly national western
characters (e.g. “ô”), which are of little use in a Japanese environment.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 20

Please observe that the shadow character set feature is considered obsolete, and
is only maintained because of backward compatibility issues. Instead the Unicode
system described below should be used, whenever special characters are needed.

• Unicode mode. Each font can contain up to 65504 characters. 16 bit character
codes are used on the target system.

All Unicode fonts should as a principle include the basic Windows ANSI Western
style character set in character codes 32 - 255.

The International Unicode Consortium defines Unicode character codes. On their
web page www.unicode.org can be found character code charts for a large portion
of the worlds character sets. All easyGUI Unicode fonts conform to this standard,
as this ensures easy compatibility with other IT systems, especially Windows, and
thereby allows easy entry of characters in easyGUI. easyGUI supports 16 bit
Unicode (basic multilingual plane), but not 32 bit (supplementary code planes).

Only Unicode所有语言 version supports the Unicode character mode. This mode is far
better suited for target systems requiring more than one character set. On the downside
a Unicode mode target system requires a little more memory than an ANSI mode
system. The Unicode所有语言 version also supports ANSI character mode.

Each font in the system can support both character modes, but characters in the ANSI
mode shadow character set are only visible if the project runs in ANSI mode, while
Unicode characters are only visible in Unicode mode. Character codes in the 256 - 511
range are not the same in ANSI and Unicode modes, as they are mapped individually in
the two modes. Only character codes in the 0 - 255 range are common to the two
character modes:

0 - 31 32 - 255

Windows ANSI

256 - 287
Do not use

Do not use

288 - 511
Shadow characters

256 - 65535

ANSI mode:

Unicode mode:

The character mode is selected in the Parameters window, on the Operation tab page,
see later.

 Character codes 0 - 31 should never be used for font characters.

TEXT FONTS

All text fonts are made after these guiding lines:

• Proportional writing.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 21

www.unicode.org

• True hanging characters: The letter “g” is defined with the lower part going below
the base line (“Eg”, not “Eg”). This is however not a requirement, any font style
can be created.

• ANSI/Unicode character codes as used in Windows. This makes it easier to
exchange data between target system and PC.

• All kinds of characters, like e.g. Western world, Cyrillic, Japanese, can be placed
in the same font, but must adhere to the limits of the character mode in use
(ANSI or Unicode).

Character definition

A character is defined in a matrix of fixed coordinates, common for all characters in a
font. An 11×21 text font is used as an example in the following chapters.

Each character is defined as a pixel pattern, e.g. a capital F:

The character is placed according to certain fixed positions in the character cell. There
are three horizontal and one vertical position:

Top Line

Mid Line

Base Line

Box Right

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 22

Capital letters should generally go from Base Line to Top Line. Letters with accents and
the like at the top (e.g. “Å”) utilizes the area above Top Line:

Lower case letters are placed between Base Line and Mid Line:

Lower case letters with hanging parts extends right down to the character cell bottom:

A character does not need to fill the area between the left border of the character cell
and Box Right fully, and if not doing so it can be centered horizontally:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 23

- or kept left adjusted. When easyGUI writes text in proportional mode the horizontal
character placement inside the character cell doesn't matter. Only if writing with fixed
spacing will the horizontal character placement be visible in the finished text.

A character may go beyond Box Right, but should not touch the right border of the
character cell, unless it is intentional that the character shall be a continuous part of a
following character, the character only will be used on its own (e.g. icons), or the font
will only be used for proportional writing:

The various reference lines are only intended as a reference line when developing the
font.

Proportional writing

All fonts can be used for proportional writing. There are three styles of writing:

• Fixed spacing. All characters are written with the same fixed width, equal to the
font width (Courier style).

• Proportional. All characters are written with a width depending on the character
size, and how it fits together with the previous character.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 24

• Numerical proportional. As proportional writing, except that the characters “0” -
“9”, "+", "-", "*", "/", "=" and " " (space) are written with fixed spacing. This
writing style can be used when writing numerical values, especially in columns.

For each character a number of proportional position marks are defined. These marks are
used when calculating horizontal character placements in proportional writing style. E.g.
a capital “F”:

There are five horizontal pairs of marks, one on Top Line, one on Mid Line, one midway
between Mid Line and Base Line, one on Base Line, and finally one pair 2/3 the way from
Base Line to the bottom of the character cell. Each pair contains a left mark (>) and a
right mark (<). These marks can be placed individually (horizontally) for each character
in the font. When two characters shall be written next to each other proportionally the
marks are used to calculate the distance between the characters. The characters are
placed so that the left-marks of the second character keep a minimum distance in pixels
to the right-marks of the first character. This minimum distance is common for all
characters in the font, and is defined along with other basic font dimensions.

The proportional marks are not necessarily placed on the first or last used pixels in a
pixel line. It is the overall shape of the character that determines where marks are
placed.

Proportional writing example: The text “Fg”. “F” and “g” has the following proportional
marks:

and

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 25

For this font the proportional distance is set to 2 pixels, so “g” is placed after “F” so that
the two proportional marks coming closest to each other maintains a horizontal distance
of two pixels. In this example it is the marks midway between Base Line and Mid Line,
indicated by stars:

This system ensures reasonably nice proportional writing with a fast calculation routine,
without demanding excessive resources from the target system by employing e.g.
kerning tables.

Font style

As the displays used in embedded applications usually have limited resolution, it is
difficult to develop nice Serif fonts, and the delivered fonts are therefore in Sans Serif
style. Serif/Sans Serif: This is a Serif font: “Serif - Yes” (There are small attachments on
the characters, e.g. the windows font “Times”), this is a Sans Serif font: “Serif - No” (e.g.
the windows font “Arial”). If easyGUI is employed on a system with a bigger display
resolution, or only limited amounts of text should be displayed, it is of course possible to
develop a Serif font.

All text fonts in the system at the moment have the same Sans Serif overall style, as far
as possible, but with some differences in the width-to-height ratio, to suit different
purposes.

Undefined characters

If a character specified for writing isn’t defined in the font, or isn’t selected for the target
system, it is shown as a filled-out block with the size of the font character cell.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 26

FONT COMPRESSION

Fonts are saved in the target system C code in compressed form, in order to save space.
For each character the individual scan lines (horizontal rows of pixels) are uncompressed,
but only scan lines differing from the previous scan line are stored in the C code.
Furthermore empty scan lines at the top and bottom of a character, and empty space to
the left and right of the character, are not stored. This system occupies a little more
space for small fonts because of the scan line accounting, but a lot less space for large
fonts. Another advantage is that decompression execution time is minimal, actually
shorter than uncompressed font writing in some cases.

CURRENT FONTS

The following list of fonts show what is currently in the easyGUI system. First text fonts
are shown, then icon fonts. ANSI 2 is the normal text font:

Font name Size in
pixels

Description

ANSI 2 6×11 Normal font. Used for most text. The
character sizes are approximately the same
as in old displays run in character mode with
8×8 matrices, allowing more text horizontally
(if proportional writing is selected), and a
little less vertically, because the characters
occupy more than 8 pixels in height.

ANSI 2 bold 7×11 Bold font. Same height as ANSI 2, but with
bolder characters. Can be used for
emphasizing text parts, or for small
headlines.

ANSI 2 condensed 5×11 Compressed font. Same height as ANSI 2,
but with reduced character width. Should
only be used if forced to do so, because it is a
little hard to read, and does not have an
appealing look.

ANSI 3 condensed 6×17 Compressed font. Same width as ANSI 2, but
somewhat higher.

ANSI 4 7×12 Normal font. A little bigger than ANSI 2, can
be used for headlines on small displays.

ANSI 5 9×17 Big font.

ANSI 5 condensed 8×17 Big font. A slightly compressed version of the
ANSI 5 font.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 27

ANSI 6 11×21 Big font. Can be used for headlines on
medium sized displays.

ANSI 7 17×31 Very big font.

ANSI 8 21×47 Very big font. Can be used for e.g. splash
screens.

Unicode 14x14 16×18 Compressed Unicode font. Asian characters
are held within a 14x14 box, causing some
characters to loose details. Also includes
Cyrillic characters.

Unicode 15x15 17×19 Compressed Unicode font. Asian characters
are held within a 15x15 box, causing a few
characters to loose details. Also includes
Cyrillic characters.

Unicode 16x16 18×20 Standard Unicode font. Asian characters are
held within a 16x16 box. Also includes Cyrillic
characters.

Icon 16x16 16×16 Very small icons.

Icon 32x32 32×32 Small icons.

Icon 48x48 48×48 Medium icons.

Icon 72x72 72×72 Big icons.

Icon 202x48 202×48 Very big icons. Can be used for e.g. Company
logos.

Text fonts starting with "ANSI" contains only ANSI characters (character codes 32 - 255)
and shadow characters. Text fonts starting with "Unicode" contain both ANSI, Unicode,
and shadow characters.

Text and icon fonts are considered the like by easyGUI.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 28

5 FONT LIST WINDOW

A list of available fonts in the system is shown. New fonts can be created, existing fonts
erased, fonts copied, and a font selected for editing. Double-clicking on a font starts
editing, just like pressing the EDIT button.

The last column indicates if the font is used in the project. Enabling just a single
character for a font will show it as in use. Character enabling/disabling is done in the
Font editing function.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 29

6 FONT EDITING WINDOW

A single font is edited in this window:

There is a fair amount of controls, which will be explained in detail below. The window is
divided into three parts:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 30

Each panel handles a part of the editing process:

1 Commands. All commands for creating, handling, and selecting characters are
placed here. Because of the number of commands the panel is subdivided into four
tab pages: Setup, Selection, Editing, and TTF import.

2 Character set. Shows all characters in the current font. Also shows a test area, for
checking proportional spacing in detail.

3 Single character. Shows the currently selected character.

FONT SETUP

The basic properties of the font are handled on the Setup tab page in the Commands
panel. The following parameters can be edited:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 31

• New name. Changes the font name. References to the font from structures in the
project are not affected by a change of name, as the references are by internal
pointers. Only deleting a font, and creating it again, will break the references.

• Type. A font can be one of two types:

� Text for normal character fonts.

� Icon for fonts containing icons. Internally the two font types are treated
the same, the distinction is purely for convenience when presenting font
lists.

• Width of character cell. Characters can be (indeed, normally is) smaller than this
width, and the value merely sets the maximum character width possible. Value
can be 1 - 255.

• Height of character cell. Characters can be (indeed, normally is) smaller than this
height, and the value merely sets the maximum character height possible. Value
can be 1 - 255.

• Box right limit. Value can be between 1 and width of character cell.

• PS num. width. Value can be between 1 and width of character cell. This width
denotes how much horizontal space each numerical character takes up, when
writing in PS numerical style. The specified with is only used for characters not
written proportional in the PS numerical style, i.e. characters “0” - “9”, "+", "-",
"*", "/", "=" and " " (space).

• Center X. Value can be between 1 and width of character cell.

• Center Y. Value can be between 1 and height of character cell.

• Top line. Value can be between 1 and height of character cell.

• Mid line. Value can be between 1 and height of character cell.

• Base line. Value can be between 1 and height of character cell.

• Cursor top. Value can be between 1 and height of character cell. Not currently
used.

• Cursor bottom. Value can be between 1 and height of character cell. Not
currently used.

• Underline top. Value can be between 1 and height of character cell.

• Underline bottom. Value can be between 1 and height of character cell.

• PS space. Number of blank pixels between two adjacent characters when making
proportional writing. Value can be between 1 and 99.

The current values are shown in the first column, while the second editable column is for
new, revised values. Only the parameters where changes are wanted needs filling out.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 32

Actual changes are made by pressing the APPLY button, which will check the entered
values, and apply the changes. If the APPLY button is not pressed nothing changes.

In the case of changes to the width and height of the font a couple of special
consideration arises:

• Width. Changes are made from the rightmost edge:

� Widening the character cell adds blank pixels to the right. PS marks are
not changed.

� Narrowing the character cell removes pixels from the right, potentially
truncating characters. PS marks are pushed to the left, if needed.

• Height. A small dialog window asks if the changes should be made from the top
or the bottom. The action then commences, depending on the circumstances:

� Enlarging the character cell adds blank pixels to the top or bottom, as
selected. If changes are made to the top the Top line, Mid line, and Base
line positions are shifted down accordingly. PS marks are not changed.

� Making the character cell smaller removes pixels from the top or bottom,
as selected, potentially truncating characters. If changes are made to the
top the Top line, Mid line, and Base line positions are shifted up
accordingly. PS marks are not changed.

If the desired operation is to enlarge or shrink the character cell evenly (or at
some ratio) both at the top and bottom, it can be accomplished by making two
height change operations.

FONT SELECTION

In order to save code space on the target system there is full control over which
characters from which fonts will be included in the target system C code. This is handled
on the Selection tab page in the Commands panel. Selection of characters can be done
using four methods:

• All characters in font. An easy way of selecting all characters at once (or none).

• All characters in use in structures. Only characters used in structures are
selected.

• All numerical characters. Selects characters “0” - “9”, "+", "-", "*", "/", "=" and
" " (space).

• Manually selected characters. The selection state of each character can be set
either by double-clicking on a character in the character set, which toggles its
selection state, or by using the five manual selection buttons:

� SELECT / DESELECT CURRENT CHARACTER. Corresponds to double-clicking the current
character in the character set.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 33

� SELECT RANGE OF CHARACTERS. A small window allows setting the first and last
character code to select.

� SELECT ALL CHARACTERS. A quick way of selecting everything, before possibly
deselecting some characters.

� DESELECT RANGE OF CHARACTERS. A small window allows setting the first and last
character code to deselect.

� DESELECT ALL CHARACTERS. A quick way of deselecting everything, before possibly
selecting some characters.

The four methods are additive. If one of the methods selects a character, the character
will be included in the target system data, no matter how the other methods threat the
character. This means that selecting all characters through the All characters in font
setting makes the other three methods redundant.

Previously in easyGUI

Previous versions of easyGUI (v5.1.5 and earlier) had their own window for selecting the
font characters to include in the generated C files for the target system. This system has
been changed, moving the font selection functionality into the font editing window.

View filter

In order to get an overview of the selection state, the characters shown in the character
set can be filtered, using the settings in the Character view filter box:

• All characters (no state indicators). Essentially a clean representation of all
characters in the font. Best used when making basic font editing, like adding and
editing individual characters.

• All characters (with state indicators). Shows all characters in the font like the
above setting, but with indicators showing the selection state of individual
characters:

White background character. The character is selected, and will be
included in the target system data.

Gray background character. The character is not selected, and will
therefore be skipped when generating the target system data.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 34

Character with red cross. The character has been manually
deselected, and will only be included in the target system data if
selected by other means. The example shows a white character
background, which shows that the character will in fact be included in
the target system data. The opposite (grayed character with a red
cross) is also possible.

Character with green cross. The character is not used by any
structures. The example shows a white character background, which
shows that the character will in fact be included in the target system
data. The opposite (grayed character with a green cross) is also
possible.

This view filter is best used when changing character selection.

• Currently selected characters. Shows only the characters that will be included
in the target system data.

• All characters in use in structures. Shows only the characters that are used in
at least one text in the structures.

• Manually selected characters. Shows only the characters that have been
manually selected.

At the bottom of the font selection panel is a statistics box showing character counts
using various criteria.

FONT EDITING

Creation, deletion, and editing of characters take place both on the Editing tab page in
the Commands panel, and in the single character panel to the right.

Pixel editing

Pixels can be edited directly in the single character panel. Clicking on a pixel toggles its
color, white to black, or vice versa. Dragging with the mouse paints pixels as the mouse
is moved, using the toggled color of the starting pixel.

PS mark editing

PS marks are moved by right-clicking and dragging horizontally. The vertical positions of
PS marks are fixed, and defined as explained in the section on proportional writing
above.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 35

By using the SET PS MARKS and RESET PS MARKS buttons all PS marks for a character can be
moved at once, see command explanations below.

Editing many characters at once

Many of the commands can work on a range of characters. This is controlled in the
Character range panel to the right:

• Current char. Editing operations only work on the currently selected character,
i.e. the character shown in the single character panel.

• Range. Editing operations work on the range of character codes indicated just
below. All characters existing within the range (range limits included) are affected
by editing commands.

• All characters. Editing operations work on all characters in the font.

For the latter two options a small warning () is shown, to remind of the potentially
huge alterations to the font.

The character range setting works on the editing functions indicated by the gray lines
going from command buttons to the Character range panel.

An alternative is to select a range of characters in the character set panel. Several
characters can be selected, by dragging the mouse in the character set panel (a block),
clicking on a character while holding down the Shift key (extend/shrink block), or clicking
on a character while holding down the Ctrl key (include/exclude single character). This
method of data selection is common in Windows. Please observe that the Character
range panel setting takes precedence, so a range of characters selected in the character
set panel is only useful if the Character range panel is set to Single character.

One character is always the active character (unless the font is empty). This character is
shown in the single character panel.

Editing commands

A large number of commands are available in the Editing panel:

• CREATE CHARACTERS. A small window appears, allowing selection of the range of
characters to create. Eventual characters already existing in the selected range
are not affected. New characters are created blank, i.e. with all pixels set to off
(white).

• DELETE CHARACTERS. A small window appears, allowing selection of the range of
characters to delete. If a range of characters is currently selected they can be
deleted instead.

• CLEAR blanks the current character, i.e. with all pixels set to off (white).

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 36

• UNDO reloads the character state from last time the project was saved.

• INVERT toggles all pixels of the current character, i.e. white pixels gets black, and
vice versa.

• HORIZONTAL MIRROR mirrors the current character horizontally. PS marks are not moved.

• VERTICAL MIRROR mirrors the current character vertically. PS marks are not moved.

• INSERT BITMAP shows a file box, allowing selection of a graphical file. The file types
must be a Windows bitmap file (bmp). Pixels in the bitmap are treated as black or
non-black, meaning that all pixels not purely black (RGB values = 0,0,0) are
imported as white pixels. The imported bitmap can have any size, but easyGUI
only uses the top left part matching the character size.

• Clipboard COPY copies the currently selected characters to both the Windows
clipboard as a 24 bit color bitmap containing only black and white pixels (active
character only), and to the internal easyGUI clipboard, allowing the characters to
be pasted into another font.

• Clipboard PASTE imports the characters currently in the internal easyGUI clipboard.
The imported characters can have any size, but easyGUI only uses the top left
part matching the current font size.

• Move UP, DOWN, LEFT, and RIGHT rolls the current character pixels in the direction
selected, with pixels spilling over an edge reemerging at the opposite edge. PS
marks rolls left and right, but stops at edges.

• SET PS MARKS readjusts all PS marks so that they are touching the character. The
function also takes pixel rows just above and below the PS row into consideration,
in order to improve the selected PS mark positions. The PS marks can then be
adjusted manually, if desired.

• RESET PS MARKS moves all PS marks to the left and right edges of the character box.

• CHECK WHITE SPACE controls the selected characters for sufficient white space at the
edges of the character cell. This can be useful when creating large Asian fonts. In
a quick action a range of characters can be checked for parts of characters
extending out of the desired character box. Before starting the function the
desired white space at the top, bottom, left and right edges is set. When pressing
the CHECK WHITE SPACE button easyGUI will show the first character in the range which
violates the criteria, or show an Ok message, if all selected characters passed the
test. Nothing is edited with this function.

• PREV selects the character just before the current character. Characters can also be
selected using the arrow keys on the keyboard, by clicking in the character set, or
by using the Search for character field just below the PREV and NEXT buttons
(character codes, both in decimal and hexadecimal, and direct characters, can be
entered).

• NEXT selects the character just after the current character. Also see the PREV button
above.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 37

TTF IMPORT

Windows TTF fonts can be imported on the TTF import tab page in the Commands
panel. Several parameters must be selected before import can start:

• Character range. Select the range of characters to import. Characters are
created, if they don't exist already in the font. Only characters actually found in
the selected TTF font will be created.

• TTF font name. Press the SELECT TTF FONT button to display a standard Windows font
dialog. Select the desired font and size. The selected font / size is shown below in
the white box.

• Black/White ratio. A Windows TTF font is vector based, and will be drawn using
the full color depth of the Windows system. This results in many shades of gray
being used to represent the individual character. As fonts in easyGUI are purely
monochromatic (only two colors, or pixel states, on and off) there must be made
some sort of conversion, reducing the gray-scale Windows characters to black-
and-white easyGUI font characters. The black/white ratio slider determines how
dark a pixel must be, in order for easyGUI to perceive it as black, and not white.
Some fonts are best imported with the slider near the middle position, while
others will be better represented if the slider is pushed more toward the right. It
is easy to experiment, because the import can be repeated again and again, using
slightly different slider settings. If the import covers a very large range of
characters a smaller sub-range can be used when adjusting the slider, in order to
speed up the response.

Examples - Windows TTF Mistral font, 16pt, normal font style:

Windows: ABC

easyGUI import, 50% black/white ratio:

easyGUI import, 70% black/white ratio:
easyGUI import, 80% black/white ratio:

In this example the best result is probably somewhere around 70% black/white
ratio.

• Vertical placement. two options are possible for the vertical placement of
imported characters:

� At font baseline. easyGUI tries to place characters, so that capital
letters are correctly placed at the font baseline. The letter "E" is used as
a template.

� Other Y position. The vertical placement can be selected manually.

It is advisable to start with the first option, and then shift to the manual
placement, if the result is not as desired.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 38

• Only create characters existing in the font. If this setting is checked the
importer will only create font characters already existing in the TTF font. If
unchecked all font characters in the indicated range will be created, no matter if
they exist in the TTF font or not.

If importing e.g. Asian Unicode characters it is advisable to have this setting
checked, as characters not existing in the TTF font are probably not usable in the
Windows environment, and will therefore be difficult to enter in texts.

• The IMPORT FONT button executes the actual import / conversion process.

After import the font data must be controlled / adjusted, and PS marks must be set. This
is the same process as if the font was created from scratch in the font editor. The proper
sequence for importing TTF font data is:

1 Select font characteristics (name, size, style).

2 Make repeated imports, while adjusting the various parameters, especially TTF font
size and black/white ratio, until a satisfactory result is achieved.

3 Move characters up/down so they are properly placed on the base line. This can be
done en masse (i.e. use the character range panel on the Editing tab page).

4 Control each imported character, and turn pixels on and off as necessary to improve
the result.

5 Set PS marks en masse.

6 Control PS marks for each imported character, and adjust as needed.

It is by far the easiest to import TTF characters into a font with a generous pixel
dimensions, so that nothing is clipped. Later, when the correct sizes and settings have
been determined, the font can be cut down in dimensions to a suitable size.

Also remember that the pixel dimensions of a font are not particularly important, if most
text is written in transparent mode, with proportional spacing.

CHARACTER TESTING

Either the character set or a test function can be shown, by selecting the Character set
or the Character test tabs.

The Character test tab page shows a number of fields and controls:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 39

In the edit box a simple text can be entered ("Font editing" in the example above),
and the result inspected in the three representations below (one for fixed spacing writing,
and two for each type of proportional writing), and in the character pair window at right.
The character pair window also shows the PS marks of both characters of a character
pair. The two blue arrow buttons selects the starting character of the pair. The PS ON and
PS NUM radio buttons selects one of the proportional writing styles for the character pair
view.

Underlining and reversed writing can also be tested in detail.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 40

7 PROJECT PARAMETERS WINDOW

This window defines basic parameters in a project, relating to display and compiler. The
parameters are subdivided into six tabbed pages, grouping the parameters logically. The
pages are explained in the following sections.

A unit used extensively from this point is "bpp", or Bits Per Pixel. This parameter is a
measure of the color depth of the display system. easyGUI can handle the following color
depths:

1 bpp Monochrome Each pixel is either turned on or off.

2 bpp Grayscale 4 shades of gray.

4 bpp Grayscale / color 16 shades of gray, or 16 colors.

5 bpp Grayscale 32 shades of gray. A special mode currently only
used by the ST7529 display controller.

8 bpp Grayscale / color 256 shades of gray, or 256 colors.

12 bpp Color 4096 colors.

15 bpp Color 32768 colors.

16 bpp Color 65536 colors.

18 bpp Color 262144 colors.

24 bpp Color 16777216 colors. Same as TrueColor in
Windows.

Monochrome version handles only 1 bpp.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 41

BASICS

Project panel

• File name. Cannot be edited.

• Project name. For informative purposes.

Display panel

• Display width and height in pixels. Sets the basic dimensions of the target
display. Only active pixels are counted, not border or overscan pixels.

• Active area. This function can be turned on and off using the checkbox. Turning
it on allows definition of a part of the display as the active area. The rest is

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 42

marked as inactive in the Structure editor, but drawing is still possible in the
inactive area. The function is intended for target systems where part of the
display is inaccessible, e.g. because it is covered by cabinet parts.

Examples:

Normal mode (active area unchecked), 240×128 pixels color display:

Settings: Display will look like:

Activating the feature with the following parameters produces:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 43

Settings: Display will look like:

On the target system the display will look like:

- i.e. the inactive area of the display is clipped.

It is also possible to move the coordinate system, so that it starts at the active
area upper left corner, instead of the normal display upper left corner.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 44

DISPLAY CONTROLLER

Settings on this page define how display RAM is handled by the target system display
controller. Furthermore the complete display image can be rotated in all four major
directions, and mirrored in both directions, to facilitate mounting the display otherwise
than initially intended by the display manufacturer.

• Byte orientation. Set this setting according to the display controller in use. For
displays with color depths of 5 bpp or higher the setting is irrelevant.

• Bit orientation. Set this setting according to the display controller in use. For
displays with color depths of 5 bpp or higher the setting is irrelevant.

• Color planes. Some display controllers operates with several color planes in
display RAM, effectively treating each plane as a monochrome image. Currently
only one and two color planes are supported.

• Display orientation. The display contents can be oriented in the four primary
directions: Normal, rotated 90° right, upside down, and rotated 90° left. This can

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 45

be utilized when mounting the display in other orientations than the one intended
by the display manufacturer. Because easyGUI uses the display in a purely
graphical way this can be done without penalties, except for a very small speed
penalty when selecting orientations differing from normal.

Before deciding to use a display in abnormal orientations make sure that viewing
of the display is satisfactory at the desired orientation. LCD displays can have
very different contrasts when viewed from different directions. This can
sometimes be used to advantage by rotating the display 180°, if the display is
view from a direction not anticipated by the manufacturer. Conversely, this may
prohibit e.g. 90° rotation of the display.

• Mirroring. The display contents may be mirrored both horizontally and vertically.
Selecting both mirroring options results in an upside down image.

• Display words with reversed bytes. Only Color and Unicode所有语言
versions. Some color displays with 16 bit words swaps the bytes in each word
around. This setting can select both orientations. Only applicable to 4 bpp color
depth with horizontal byte orientation, and 8 bpp color depth. Other display
controller setups are unaffected.

• No. of display controllers, horizontally. Some displays uses more than one
display controller horizontally, like when e.g. the Hitachi HD61202 controller (a
64×64 pixel controller) is used with 128×64 pixel displays.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 46

COLOR

The color page controls how the display controller handles color modes.

Selecting the optimal color mode and color depth is a complex evaluation of needs in the
user interface, capabilities of the selected display controller, available RAM and ROM, and
processor power. Higher color depths puts increased demands on every aspect of the
target system hardware, but also produces more pleasant results, increasing the quality
feel of the product.

Colors panel

• Pixel On and Pixel Off colors.

Monochrome version: Used to make the display look like the real thing,
when showing it in the easyGUI application. Has no influence on the target
system.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 47

Color and Unicode所有语言 versions: Defines which colors are to be used
when specifying Pixel ON and Pixel OFF colors for structure items. Default is black
for Pixel ON, and white for Pixel Off. These colors are also used on the target
system.

Color / Grayscale mode panel

Only Color and Unicode所有语言 versions. Defines the type of color management
used by the display controller. Can be:

• Gray scale. Can be used with from 1 bpp (2 color) to 8 bpp (256 color) color
depths. No definition of how the colors are constructed is necessary for grayscale
mode. easyGUI defines a range of gray colors ranging from purely white to purely
black, with the number of colors defined by the next parameter, Color depth.
Selecting Gray scale, and 1 bpp (2 color) color depth, corresponds to a
monochrome display with only Pixel ON and Pixel OFF capability. This is the native
mode of easyGUI Monochrome version.

• Color via palette index. Can be used with 4 bpp (16 color) and 8 bpp (256
color) color depths. Each pixel on the display contains an index value, used by the
display controller to look up the color in a palette table. easyGUI constructs the
palette table based on the settings in this window, when generating c files for the
target. The easyGUI palette table must be transferred to the display controller at
target system startup.

• Direct RGB color. Can be used with from 8 bpp (256 color) to 24 bpp (16 million
color) color depths. Each pixel on the display contains a direct color value with
RGB values (Red, Green, and Blue) for the color.

Color depth panel

Only Color and Unicode所有语言 versions. Defines the number of colors on the
display. Can be:

• 1 bit (B/W). Monochrome display mode, with only Pixel ON and Pixel OFF
capability. This is the native mode of easyGUI Monochrome version.

• 2 bit (4 gray levels). Can show white, light gray, dark gray, and black pixels.

• 4 bit (16 palette entries / gray levels). Can show 16 shades of gray, ranging
from white to black, or 16 colors via a palette, with each color freely selectable.

• 5 bit (32 palette entries / gray levels). Can show 32 shades of gray, ranging
from white to black. This mode is special to the ST7529 display controller.

• 8 bit (256 palette entries / colors / gray levels). Can show 256 shades of
gray, ranging from white to black, or 256 colors via a palette, with each color
freely selectable, or 256 colors directly as RGB values.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 48

• 12 bit (4096 colors). Can show 4096 colors directly as RGB values.

• 15 bit (32K colors). Can show 32768 colors directly as RGB values.

• 16 bit (64K colors). Can show 65536 colors directly as RGB values.

• 18 bit (256K colors). Can show 262144 colors directly as RGB values.

• 24 bit (16M colors). Can show 16777216 colors directly as RGB values.

The type of display controller used on the target system determines which combinations
of color modes and color depths can be used. Some controllers support only palette
modes, some supports only 4 bpp and 8 bpp pixel color depths, and so on. The possible
combinations in easyGUI are:

Support Gray scale Palette RGB

1 bpp (2 colors) Ok Not possible Not possible

2 bpp (4 colors) Ok Not possible Not possible

4 bpp (16 colors) Ok Ok Not possible

5 bpp (32 colors) Ok Not possible Not possible

8 bpp (256 colors) Ok Ok Ok

12 bpp (4096 colors) Not possible Not possible Ok

15 bpp (32K colors) Not possible Not possible Ok

16 bpp (64K colors) Not possible Not possible Ok

18 bpp (256K colors) Not possible Not possible Ok

24 bpp (16M colors) Not possible Not possible Ok

The various combinations have different strengths and weaknesses, when used for
ordinary text, simple bitmaps icons with few colors, and continuous tone bitmaps:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 49

Quality Text Simple
bitmaps / icons

Continuous
tone bitmaps

1 bpp grayscale (2 shades) High Low Not suitable

2 bpp grayscale (4 shades) High Medium Low

4 bpp grayscale (16 shades) High High Medium

5 bpp grayscale (32 shades) High High Medium

8 bpp grayscale (256 shades) High High High

4 bpp palette (16 colors) High High Low

8 bpp palette (256 colors) High High Medium

8 bpp RGB (256 colors) High High Low

12 bpp RGB (4096 colors) High High Medium

15 bpp RGB (32K colors) High High Medium

16 bpp RGB (64K colors) High High Medium

18 bpp RGB (64K colors) High High High

24 bpp RGB (16M colors) High High High

As an example on continuous tone bitmap quality the following bitmap (150×95 pixels) -

 - is shown in the various color modes / depths:

• 1 bpp grayscale (2 shades):

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 50

All colors are converted to either black (<50% gray) or white.

Another approach is to use an error diffusion raster:

However, this technique is outside the scope of easyGUI, and must be handles by
a dedicated graphical editing application.

• 2 bpp grayscale (4 shades):

With only four shades of gray (and the two of them black and white) the quality of
the picture is not impressive. The palette is fixed as:

• 4 bpp grayscale (16 shades):

16 shades of gray result in a much nicer bitmap. The palette is fixed as:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 51

• 5 bpp grayscale (32 shades):

32 shades of gray result make an even better bitmap. The palette is fixed as:

• 8 bpp grayscale (256 shades):

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 52

256 shades of gray produce a high quality black & white bitmap. The palette is
fixed as:

• 4 bpp palette (16 colors):

As only 16 colors are available for the entire color space the quality is not suited
for continuous tone bitmaps. The palette used here is the standard easyGUI 16
color palette:

The palette can be edited. The quality can be substantially raised by employing a
palette specially suited for the bitmap:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 53

This changes the picture to:

 - but this approach is seldom practical, because a specialized palette is seldom
useful for more than one image. An exception is when employing company logo
colors for various graphical elements.

• 8 bpp palette (256 colors):

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 54

Still not a perfect bitmap, but much better than the 4 bpp mode with standard
palette. The palette used here is the standard easyGUI 16 color palette:

The palette can be edited. Again the palette can be optimized for this particular
bitmap:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 55

 - creating an almost perfect bitmap:

• 8 bpp RGB (256 colors):

This bitmap was created using 3 bits for red, 3 bits for green, and 2 bits for blue
intensity. The actual assignment of bits depends on the display controller.

• 12 bpp RGB (4096 colors):

This bitmap was created using 4 bits for each of the RGB color intensities.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 56

• 15 bpp RGB (32K colors):

This bitmap was created using 5 bits for each of the RGB color intensities.

• 16 bpp RGB (64K colors):

This bitmap was created using 5 bits for red, 6 bits for green, and 5 bits for blue
intensity. Generally the green color should receive the most bits, if an even split
between the three primary colors is not possible, because the human eye is most
sensitive to yellow and green colors. One bit extra for green, compared with the
15 bpp example above might not seem like much, but it is visible in the example
at the upper right corner, where the 16 bpp bitmap produces a more smooth
transition than the 15 bpp bitmap.

• 18 bpp RGB (256K colors):

This bitmap was created using 6 bits for each of the RGB color intensities. The
quality is now really good, but can still be improved.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 57

• 24 bpp (16M colors) RGB:

This bitmap was created using 8 bits for each of the RGB color intensities. This is
the highest quality handled by easyGUI.

Palette handling

Only Color and Unicode所有语言 versions. Permits editing of the 4 bpp and 8 bpp
palettes (4 bpp palette shown as example):

The Index drop-down box allows selecting between several palettes. For 4 bpp palettes
they are:

• Factory 1 (Windows palette)

• Factory 2 (RGB=4/2/2 levels) - i.e. all combinations of 4 red levels, 2 green,
and 2 blue.

• Factory 3 (RGB=2/4/2 levels) - i.e. all combinations of 2 red levels, 4 green,
and 2 blue

• Factory 4 (RGB=2/2/4 levels) - i.e. all combinations of 2 red levels, 2 green,
and 4 blue

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 58

• User defined 1. Any color can be assigned to any color index. Initially all colors
are black.

• User defined 2. Any color can be assigned to any color index. Initially all colors
are black.

• User defined 3. Any color can be assigned to any color index. Initially all colors
are black.

For 8 bpp palettes they are:

• Factory 1 (RGB=6/6/6 levels + grayscale + spare) - i.e. all combinations of
6 red levels, 6 green, and 6 blue, a 32 shade gray scale section, and finally 24
spare color indices, which are initially black.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 59

• Factory 2 (RGB=8/8/4 levels) - i.e. all combinations of 8 red levels, 8 green,
and 4 blue.

• Factory 3 (RGB=8/4/8 levels) - i.e. all combinations of 8 red levels, 4 green,
and 8 blue.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 60

• Factory 4 (RGB=4/8/8 levels) - i.e. all combinations of 4 red levels, 8 green,
and 8 blue.

• User defined 1. Any color can be assigned to any color index. Initially all colors
are black.

• User defined 2. Any color can be assigned to any color index. Initially all colors
are black.

• User defined 3. Any color can be assigned to any color index. Initially all colors
are black.

Each palette can be given a name, which is only for informational purposes.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 61

The DEFAULT PALETTE button replaces all colors with the standard easyGUI palette colors for the
palette in question - for the user defined palettes all colors will be reset to black.

Color handling

Each color in easyGUI can be edited by double-clicking it. A single color editing window
appears:

The color can be edited in a number of ways:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 62

• Color mixer. Works by setting color based on hue, saturation, and brightness.
Use the slider to select color saturation, and the field to select hue
(horizontal direction) and brightness (vertical direction).

• RGB values. The red, green, and blue intensities (0-255) are entered directly as
numerical values.

• HSB values. The hue (0-360), saturation (0-100), and brightness (0-100) are
entered directly as numerical values.

• Existing color. Shows the color as it was before editing started.

• Edited color. Shows the current state of the color.

• Edited color with palette resolution. Shows the current state of the color,
using the current color mode and depth (bits per red, green and blue color shown
in parenthesis). This field is only shown if applicable.

• Palette colors. These colors are 20 colors that can be easily used and copied
across the system. This internal palette must not be confused with the 4 bpp and
8 bpp color depth palettes described in the previous sections. To set the color
being edited to one of the palette colors just double-click the palette color. To set
the palette color drag the color from the Edited color field just above the palette
using the mouse. These palette colors need not be set to anything, they are just
meant as an easy way of selecting the same color for many items.

RGB format

Only Color and Unicode所有语言 versions. Specifies how the target system
display controller handles color information in display RAM. A window for color bit
definitions is shown:

Bits for the three primary colors red, green, and blue, can be placed in the RGB bytes.
Three bytes are shown, but how many bytes are actually in use depends on color depth
and display controller type. In the example above RGB coding for an 8 bpp display
controller mode is shown. Three red, three green, and two blue color bits has been
placed in the first RGB byte.

The setup in this window is remembered for each combination of color mode and color
depth where it is applicable (not gray scale modes). For palette modes the setup is used

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 63

to define the layout of the palette table colors, while for RGB modes it is used for defining
the actual pixel bytes in display RAM.

A bit is set to a color by dragging from the bit legends at lower left to the desired bit with
the mouse. Alternatively colors can also be dragged from bit to bit in the three display
bytes. Dragging the same color to a second bit automatically fills out any intermediate
bits with the same color, i.e. bits for a particular color are always consecutive. Color bits
can be erased again by dragging from the Unused bits legend, or from a gray bit to the
desired bit location.

The number of display bytes in use does not necessarily correspond to the selected color
depth. An example is:

This particular display controller uses three bytes for each color, despite the fact that the
color depth is only 12 bits (three each of red, green, and blue). In reality the display
controller only has 4 bit registers for each color, but they are accessed as bytes on
distinct addresses, and therefore are considered individual bytes by the microprocessor.

A third example is:

This display controller requires two bytes for the 15 bpp display depth shown, but the
blue color is placed on the lowest bits, followed by the green and the red colors.

How the colors are arranged in a particular display controller, operating at a particular
color mode and color depth, must be found in the documentation for the display
controller. Do not despair if your particular display controller is impossible to configure in
easyGUI. The display industry is in continuous development, and it is therefore difficult to
cover all possible setups. Contact easyGUI support if you encounter trouble in the setup
process.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 64

SIMULATED DISPLAY

Settings on this page only affect the visual representation of the display inside the
easyGUI environment, in order to more accurately reflect the "real thing". The selections
are not transferred to the target system.

• Border color. Select between light and dark border. Most displays use light color
for the border area (also called the overscan area), but some displays are dark in
this area. Normally this is not user selectable, but depends on the technology
used in the display. It is important to select the correct setting here, because a
dark border makes it necessary for all dark text on light background to stay clear
of the border with at least one pixel to avoid the text "gluing" to the border,
where a light border does not have this problem. The border color thus somewhat
affects the layout of the user interface. If light text on dark background is used
the problem is of course reversed.

• Display border width. The border area is the visible area around the active
pixels in the display. Measured in pixels. A sensible value for most displays is 3 or
4 pixels.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 65

• Undrawn area color. Used by easyGUI to indicate areas of the display not
touched by a particular screen structure. Set this color to a deviating color to
enhance its visibility. In many instances it is nice to be able to see which areas of
the display are drawn on by the structure. Without the Undrawn color area this is
invisible, if drawing with the background color.

COMPILER

Settings on this page concerns the C compiler used on the target system. Unfortunately
the various C compilers in use in the embedded world don't comply 100% to the same
standard. Even if a particular compiler states that it adheres to the ANSI X3.159-1989
Standard C convention, it is not guaranteed to work without the need for some tweaks to
these settings. It is therefore necessary for easyGUI to know the syntax for various
subjects of the compiler. Furthermore, some buffer sizes are determined here.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 66

Type definitions panel

• 8 bit char type. Default is char.

• 8 bit signed type. Default is signed char.

• 8 bit unsigned type. Default is unsigned char.

• 16 bit signed type. Default is signed short.

• 16 bit unsigned type. Default is unsigned short.

• 24 bit signed type. The 24bit variables are only used for compilers using a 24
bit addressing space (e.g. 8086 family processors). For other compilers the two
24 bit fields should just be left empty. Default is empty.

• 24 bit unsigned type. Default is empty.

• 32 bit signed type. Default is signed long.

• 32 bit unsigned type. Default is unsigned long.

• Pointer size. Can be set to 16 bit, 24 bit, and 32 bit pointers. Two additional
choices are void * and void *const. Most compilers are happy with the void *
setting. It is very important that this setting is correct.

Constant declarations panel

The four prefix strings are inserted into the GuiStruct and GuiFont c & h files. The default
values are:

• Unsigned byte: const GuiConst_INT8U

• Unsigned integer: const GuiConst_INT16U

• Generic pointer: const GuiConst_PTR

• Font structure: const GuiLib_FontRec

• Font structure pointer: const GuiLib_FontRecPtr

• Font pointer lists:

Reasons for changing them can be e.g. special code for Flash RAM systems.

The last setting is empty as default, but by setting it to "const" when using Keil compilers
the placement of the font pointer list in RAM instead of flash memory can be prevented.

All the settings can be reset to the default by pressing the DEFAULT COMPILER PREFIXES button.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 67

Special compiler settings panel

• Normal ANSI compiler. This is the default setting, which shall be used for
X3.159-1989 Standard C compliant compilers.

• AVR compiler flash RAM operation. Use this setting if the AVR compiler is
used, and RAM is of flash type. The flag sets some special settings in the easyGUI
library, enabling use of flash RAM in the AVR development environment.

• Microchip Pic-C compiler operation. Use this setting if one of the Microchip
Pic-C compilers is used. The flag inserts rom qualifiers where needed in the
easyGUI library.

• Keil 8051 compiler reentrant keyword. Adds the keyword reentrant to all
recursively called functions in the easyGUI library. If this setting is not used
easyGUI will typically display graphics primitives and simple screen structures
correctly, but fail to display complex screen structures.

• Imagecraft compiler operation. Use this setting if one of the Imagecraft
compilers is used. The flag inserts const qualifiers where needed in the easyGUI
library.

• CodeVision compiler operation. Use this setting if one of the CodeVision
compilers is used. The flag inserts flash qualifiers where needed in the easyGUI
library.

• AVR GCC compiler operation. Use this setting if the GCC AVR compiler is used.
The flag inserts PROGMEM qualifiers where needed in the easyGUI library. Observe
that only monochrome displays are supported with this compiler, due to the very
small RAM sizes possible.

Buffer sizes panel

• Max. text string length. Determines buffer size in the target code for text
writing. Enlarging the buffer permits longer text to be handled by easyGUI, but
consumes more memory.

• Max. numerical variables string length. Determines buffer size in the target
code for writing variables on screen. Enlarging the buffer permits longer variables
(text representation) to be handled by easyGUI, but consumes more memory.

• Max. No. of auto redraw items. Determines how many auto redraw items
easyGUI can handle simultaneously. A higher number consumes more memory.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 68

OPERATION

Settings on this page determine miscellaneous parameters of the easyGUI library
operational mode.

Text setup panel

• Character mode. Only Unicode所有语言 version. Selects between ANSI mode (8
bit character codes) and Unicode mode (16 bit character codes).

• Default font. All new text items in structures use this font, until something else
is selected (something else than the "No change" setting).

• Decimal point character. Used when displaying decimal numbers. Can be period
(American style) or comma (Continental European style).

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 69

Auto redraw panel

• Continuous updating. All Auto redraw items are continuously updated, each
time the GuiLib_Refresh function is called. This is the default setting, and the
mode used by easyGUI before this Auto redraw mode parameter was
implemented.

• Update on changes. Auto redraw items are updated only if the controlling
variable / variable to be displayed has changed, or if the item does not involve a
variable (not very usefull).

Cursor mode panel

• Stops at top/bottom. When navigating cursor fields on the target system it is
not possible to jump from the last cursor field to the first, when issuing the cursor
down command, and vice versa. In the Structure editor the selected cursor fields
always wrap around when testing the visual behavior.

• Wraps around. The opposite setting, when navigating cursor fields on the target
system it is possible to jump from the last cursor field to the first, when issuing
the cursor down command, and vice versa.

Scroll mode panel

• Stops at top/bottom. When navigating scroll boxes on the target system it is
not possible to jump from the last scroll line to the first, when issuing the scroll
down command, and vice versa. In the Structure editor the selected scroll line
always wraps around when testing the visual behavior.

• Wraps around. The opposite setting, when navigating scroll boxes on the target
system it is possible to jump from the last scroll line to the first, when issuing the
scroll down command, and vice versa.

Module selection panel

Various parts of the easyGUI target library can be disabled out, by un-checking these
checkboxes, in order to save code and memory space. Standard setup is all modules
enabled.

The modules, and the consequences of deselecting them, are:

• Cursor support. Cursor fields cannot be used in the target code. Saves
approximately 2kB of code.

• Scroll support. Scrolling boxes cannot be used in the target code. Saves
approximately 5½kB of code.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 70

• Blink support. Blinking boxes (for e.g. blinking cursors) cannot be used in the
target code. Saves approximately ½kB of code.

• Clipping support. Clipping rectangles cannot be used in the target code. More
important, drawing of objects (text, lines, etc.) outside the display area is no
longer caught by the easyGUI library, and can potentially cause memory area
violations. Saves approximately 3kB of code.

• Bitmap support. Bitmaps cannot be used in the target code. Do not confuse with
icons in fonts, which can still be used. Saves approximately 2½kB of code.

• Floating point support. Variables of types float and double cannot be used in
the target code. The amount of code saved on the target system overall differs
depending on the floating point library in the compiler in use, and more
important, whether it is used by other parts of the target code. The amount of
code saved in the easyGUI library is negligible.

Do only deselect modules if forced to do so by memory constraints. This saves
troubleshooting, if a function using one of the de-selected modules is inadvertently used.

When creating c files easyGUI warns, if e.g. a scroll box definition is met, with the scroll
box module turned off.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 71

8 LANGAUGE TRANSLATION WINDOW

Displays a list of all texts in structures

The list in the left part of the window contains two columns of texts, a reference column
and an editable column. The reference column is then set to the reference language
(which doesn't have to be the primary language), and the editable column is set to one
of the other languages in the project (French in this example). For the text selected in
the right text column (Préparation manuelle in this case) all structures containing this
text is shown in the right half of the window (a single structure in this example). Each
structure is shown in two versions, with the left one using the reference language
(English here), and the right using the edited language (French here). The text under
editing is shown in red, this can be suppressed if desired by un-checking the MARK TEXT
check box above the structures. The other check box SHOW ACTIVE AREA determines if an
additional rectangle shall be drawn around the active pixels in the display, marking the
boundaries of active pixels, inside which text can be written.

At the top is a box for selecting the current language when editing structures. This
setting has no immediate effect in the language window, but controls which language is
used when showing structures in other windows in easyGUI.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 72

Furthermore three buttons are placed at the top:

• LANGUAGE SETUP. Shows a windows with language definitions:

Individual languages can be added, removed, and moved up and down. The
topmost language (index zero) is the primary language, which is automatically
active at target code startup time.

For each language can be selected a character set, most languages will use
character set 0 (Windows ANSI characters). In Unicode mode the CHAR.SET column is
not relevant, and therefore not shown.

A project must always contain at least one language.

• EXPORT TO FILE. Exports all text with associated fonts and structure information to a
special file with egt filename extension. This file is used by the translate utility
easyTRANSLATE, used by exterior persons assigned to the task of translation. This
utility can accomplish the same as the translation part of the Language window in
easyGUI.

• IMPORT FROM FILE. Imports data back from easyTRANSLATE. Texts that were changed
externally in easyTRANSLATE are marked with a little red E to the left, until the
project is saved.

For more information on exporting and importing, see the easyTRANSLATE chapter later.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 73

Above the text columns are two settings:

• TEXTS IN LISTS. Switches between showing all texts, or only show texts selected for
translation. Translation is elected for each text individually in the structure editor.
Texts not marked for translation are omitted in the right text column, and
replaced by a green box stating "No translation".

• FONTS IN DISPLAYS. Switches between only allowing display of characters currently active
in the project, or allowing display of all characters. Character and font selection is
handled in the Font editor window.

At the top of the left text column is a button:

• COPY TEXTS FROM LEFT TO RIGHT COLUMN. This action can be used to reset the translation. When
pressed easyGUI asks if all texts should be copied, or only texts for which the
corresponding right text column line is empty. The latter option will be the usual
action, as the former overwrites eventual translations in the right text column.

At the top of the right text column is a button:

• SHOW ALL LANGUAGES FOR THIS TEXT. Pressing the button shows a little window displaying all
language texts for the active text line, not only the two visible in the left and right
columns. This can be handy when checking other languages during translation.
This dialog can also be invoked in the structure editor.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 74

9 POSITIONS WINDOW

Displays a list of coordinates:

These coordinates can be used in structure editing, ensuring that related items are
placed at the same position in different structures, e.g. the vertical position of headlines.
easyGUI can be used without utilizing the position list, it is meant as an option.

For each position an X, a Y, and an Alignment can be set. Additionally, an explanation
can be made, for information purposes only.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 75

10 VARIABLES WINDOW

Displays a list of variables:

The variables can be used on the target system just as variables defined normally, but
furthermore they can be used to control structures in structures, i.e. structures can be
shown depending on the setting of a controlling variable. The variables are created,
erased and copied in this window. Each variable has the following properties:

• Name. Must confirm to standard C syntax. When used on the target system all
variables will have the text “easyGUI_” added before the variable name, in order
to make clear that this variable originates from the easyGUI system.

• Type. One of the following types:

� bool. A special case of 8 bit unsigned which can only be assigned the
values “false” (=0) and “true” (=1).

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 76

� 8 bit unsigned.

� 8 bit signed.

� 16 bit unsigned.

� 16 bit signed.

� 32 bit unsigned.

� 32 bit signed.

� float.

� double.

� string.

• Numerical value. The numerical value is only used inside easyGUI, it is up to the
programmer to assign proper values on the target system. Has a special meaning
for string type variables, where it defines the number of characters.

• String value. Has only meaning for string type variables.

• Explanation. Free text for information purposes only.

Variables not in use anywhere in easyGUI are marked with a special background pattern
(e.g.).

All values can be saved in a file, and later reloaded, using the SAVE VALUES and LOAD VALUES
buttons. This can come handy when setting up a lot of variables controlling dynamic
structures to show a specific situation in easyGUI. The save/load feature has no effect on
target system code.

By pressing USED BY a list of structures referencing the currently selected variable is shown.
Double-clicking on one of the structures jumps directly to the structure editing window.

IMPORTING DEFINITIONS

Variable definitions can be imported from various file formats, using the IMPORT SETUP button
to specify the import format, and the IMPORT VARIABLE DEFINITIONS button to execute the actual
import.

Import setup

The import setup window contains a lot of settings:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 77

Import type

First of all there is a selection between C style import or Delimited import:

• C syntax. C style import follows standard C syntax, and tries to extract all
variable definitions from the C code. Complex structures and arrays are skipped,
as are constants. Variable types can both be standard C types, as defined in the
Parameters window, Compiler tab page, Type definitions box (example):

� bool

� char

� signed char

� unsigned char

� signed short

� unsigned short

� signed long

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 78

� unsigned long

� float

� double

- or they can be standard easyGUI variable types, like:

� GuiConst_CHAR

� GuiConst_INT8S

� GuiConst_INT8U

� GuiConst_INT16S

� GuiConst_INT16U

� GuiConst_INT32S

� GuiConst_INT32U

� GuiConst_TEXT

� GuiConst_CHAR

Any mix of definition types is allowed.

• Delimited. This format is for formalized, and is also known as e.g. comma-
delimited text. The many parameters in the setup window allows for very flexible
configuration of the import format.

The following parameters can be edited:

� Delimiter. The character separating parameters in the import file.

Most of the parameters are either column numbers, or keywords. Columns are
divided by the delimiter character, and are numbered one, two, etc. in each
imported text line.

� Variable identified column. The column containing the names of the
variables.

� Data type column. Allows for variables to be divided between integral
and enumerated variable definitions. If this division between types is not
necessary the column index can be set to zero.

Please observe that enumerated types are currently not supported by
easyGUI, but that these variable definitions are imported as variables of
type unsigned char.

� Integral keyword. The keyword to be found in the Data type column, if
a variable definition is of integral type.

� Enumerated keyword. The keyword to be found in the Data type
column, if a variable definition is of enumerated type.

� Enumerations starts at column. For an enumerated variable type the
first enumeration declaration is found in this column. The following
columns are expected to contain additional enumerations, until the end
of the line.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 79

� Variable type boolean column.

� Boolean keyword. The underlying variable type for boolean is an
unsigned char.

� Variable types integer column.

� 8 bit keyword.

� 16 bit keyword.

� 32 bit keyword.

� Variable types floating point column.

� Float keyword.

� Double keyword.

� Variable type string column.

� String keyword.

� String length column. This column setting is to be used if the string
length is specified in its own column, and not as part of the string
keyword. If this feature is not necessary the column number can be set
to zero.

� Signed/unsigned column. This column setting is to be used if the
signed/unsigned choice for integer types is specified in its own column,
and not as part of the integer keyword. If this feature is not necessary
the column number can be set to zero.

� Signed keyword.

� Unsigned keyword.

� Variable value column. This column setting is to be used if values for
variables are specified in their own column. If this feature is not
necessary the column number can be set to zero - all variable values will
then be set to zero/empty string.

The columns for boolean, integer, float, etc. can be the same column, in fact this
is often the case.

Making the import

When pressing the IMPORT VARIABLE DEFINITIONS button a dialog is shown, which permits selecting
the desired import file. After pressing Ok the import will start.

All variable definitions accepted by the importer function are then either created,
skipped, or a similarly named variable overwritten, depending on the setup. Corrupt or
illegal syntax in the import file is simply skipped.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 80

11 STRUCTURES WINDOW

Screen structures are the basic ingredient in easyGUI. Structures are simple or complex
collections of text and graphical elements, which together comprises the visual part of a
user interface.

THE BASICS

A complete screen picture on the machine is made up of one or more screen structures,
shown successively on top of each other. Typically there could be separate structures for
headline, menu commands, and main functionality of the screen, but that is entirely up
to the user to determine.

Each structure is identified by a name and an index number (0-99).

The index number is used when calling indexed structures. These are structure calls
based on a variable value that determines which structure of several with identical names
should be called (i.e. shown). An example could be: Two structures are made, each
containing just one text, where the first structure has the name/No. TempUnitStr [0] (index
number always shown in [x] brackets after the name) and contains a text “°C”, while the
second has the name/No. TempUnitStr [1] (same name, but differing index number) and
contains the text “°F”. A structure wanting to display a temperature could display the
numerical value itself, followed by an indexed structure call to one of the “°C” and “°F”
structures, based on the value of a variable called e.g. TempUnit. The call would specify
structure name TempUnitStr, and if the value of variable TempUnit is 0 structure TempUnitStr [0]
will be shown, if the value is 1 structure TempUnitStr [1] will be shown, and if the value is
something else nothing will be shown. The last situation is not illegal, but can be used to
great advantage to include or exclude parts of a screen layout, based on variables. If
only a structure named XXX [1] exists, but not structure XXX [0], setting the controlling
variable to 0 will show the screen without structure XXX [1], and setting the controlling
variable to 1 will show the screen with structure XXX [1]. A structure shown dynamically
this way can itself contain calls to other dynamic (or static) structures, enabling complex
systems to be made in easyGUI, controlled by only a few variables in the target system C
code. The only limits are stack space considerations on the target system, and the ability
of the user to keep a mental picture of the constructs.

ITEMS

Each structure contains a number of items (0-255). Each item can be one of the types:

• Text A single text string with associated parameters.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 81

• Paragraph A text box with associated parameters, where text is
automatically divided into lines at word spaces and
hyphen characters.

• Pixel A single pixel.

• Line A line segment, can be in any angle.

• Framed rectangle A rectangle frame with specified thickness, optionally
filled with another color.

• Filled rectangle A filled rectangle without border.

• Bitmap A bitmap file located outside the project file. The
bitmap is shown in full color in easyGUI, but is
reduced to the colors possible by the currently
selected color mode and color depth on the target
system.

• Structure call Unconditional call of another structure, specified by
both name and index number.

• Indexed structure call Indirect call of another structure, specified only by
name. Structure index number is specified
dynamically at runtime through a variable.

• Variable Writes a variable according to current formatting
settings.

• Variable paragraph A variable string box with associated parameters,
where text is automatically divided into lines at word
spaces and hyphen characters.

• Formatter Sets variable formatting, no visible output. Has no
effect on string variables.

• Active area Defined an active area of the display. Display writing
falling outside the active area is not prohibited, but
can optionally be clipped. The coordinate system may
optionally be transferred to the active area. The
active area is in effect for the rest of the structure, or
until another active area item is encountered.

• Clipping rectangle Defines a clipping rectangle. All following items are
drawn clipped to the specified rectangle. Can be
cancelled by another clipping rectangle.

• Touch area Defines an area of the display for the touch interface.
The touch areas are individually numbered. There is
no visual drawing associated with touch areas.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 82

The two items “Structure call” and “Indexed structure call” are the ones that give
easyGUI its dynamic properties, by enabling structures to be called from structures,
either unconditionally, or controlled by a variable.

When a structure is drawn, items are drawn sequentially, starting with item one. When
encountering a structure call (child structure) the items of the child structure are drawn
completely, before continuing with the rest of the parent structure items.

WINDOW LAYOUT

easyGUI structures are handled in this window:

The window is rather complex, as it contains a lot of functionality, but breaking the
window into its major panels shows the organization more clearly:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 83

Each panel handles a part of the editing process:

1 Structure management. Creates, deletes, copies, navigates etc. complete
structures.

2 Item list. Shows all items of the currently selected structure.

3 Item data. Shows all parameters for the currently selected item.

4 Target system display. Shows the end result for the currently selected structure.

The panels are explained in the following chapters.

STRUCTURE MANAGEMENT PANEL

Inside this panel are a number of various commands controlling complete structures. At
the top is a drop-down box containing all structures in the project. Right next to it is an
index number box, showing the index number of the currently selected structure. The
drop-down box and index number box is not editable. Below these boxes are four buttons
allowing quick selection of previous and following structures, both based on name and
index number.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 84

At the left are a number of buttons managing structures:

NEW Creates a new structure with no items in it.

COPY Copies the current structure. The new structure can be given a new
name and index number, or just a new index number, making it a
sister to the current structure.

DELETE Deletes the current structure.

RENAME Renames the current structure, either by just changing the index
number, or by altering the name, or both.

C Copies the structure name to the Windows clipboard, with the text
GuiStruct_ added before it. This ensures easy pasting into target
system C code.

CLIPBOARD SETUP Determines how structures exported to the clipboard shall look. Border
thickness, white space above and below the structure (to make it easier
to insert the bitmap in Word), colors used, and clean/easyGUI style
appearance can be set.

CLIPBOARD COPY Copies the current structure to the Windows clipboard as a graphic.
Can then be inserted directly into another application, e.g. Word or
Corel Draw. Furthermore, the structure are copied into an internal
easyGUI clipboard, allowing it to be pasted into another project, or
another easyGUI database, as long as easyGUI is not closed down.

CLIPBOARD PASTE Pastes a structure from the internal easyGUI clipboard.

CLIPBOARD COPY TO FILE Copies the current structure to a .bmp bitmap file.

In the middle of the panel is a history box showing the most recent structures selected
for editing. A structure can be made current by clicking it. The topmost structure is the
current structure, and nothing will happen if it is clicked.

The buttons below the history box controls service functions:

CALLED BY Shows a list of all structures calling the current structure, either directly
or indexed. The list may be empty, but if not, one of the calling
structures can be selected by clicking it.

To the right of the panel is an origo box, containing an X and a Y coordinate. These
coordinates are only used in easyGUI, not on the target system. They determine where
the first item of a structure is placed, if this item uses relative coordinates. This is usual
practice for structures containing parts of a display layout, so these structures will never
be shown on their own on the target system. If they are shown directly on the target
system the origo is set to 0,0. In easyGUI it is practical to set origo to e.g. 20,20 to bring
relative texts into view in the display panel. If origo is kept at 0,0 a relative text will only
be partially visible at the top left corner of the display, very inconvenient. If the first item
in a structure uses absolute coordinates the origo setting has no effect. The origo setting
is individual for each structure.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 85

A warning button may be shown below the origo box, if easyGUI detects a possible
error condition. Pressing it shows the relevant warning. The following warnings are
possible:

• “Largest text is X characters in length, max. text length selected in Project
parameters is Y characters”. The max length should be increased, or
alternatively, the item text made shorter or divided into two separate texts.

• “Largest numerical variable is X characters in length, max. string length selected
in Project parameters is Y characters”. The max length should be increased, or
alternatively, the variable formatting changed.

• “No. of Auto Redraw items in this structure is X, max. No. of auto redraw items
selected in Project parameters is Y items”. The max. No. of items should be
increased, or alternatively, the number of auto redraw items should be reduced.

ITEM LIST PANEL

The item list shows all items in the current structure. The list may be empty if no
structure is currently selected (only possible if no structure exists at all), or if the current
structure contains no items (not very useful...). The items are numbered from one to at
most 256, always sequentially. Items can be added, copied and deleted using the buttons
to the left of the list:

NEW Creates a new item above the current one (or optionally below, if the
last item is current).

COPY Copies the current item (or items) to a position below the current one.

DELETE Deletes the current item (or items).

ITEM TYPE Selects the item type.

CLIPBOARD CUT Cuts (deletes) the current item (or items) from the structure and places
it in an internal easyGUI clipboard, allowing it to be pasted into another
structure, eventually in another project file, as long as easyGUI is not
closed down.

CLIPBOARD COPY Copies the current item (or items) to the internal easyGUI clipboard,
allowing it to be pasted into another item, as long as easyGUI is not
closed down.

CLIPBOARD PASTE Pastes the item (or items) from the internal easyGUI clipboard into the
structure before the current item. If the current item is the last, a
selection box is shown, offering the item(s) to be pasted before or after
the last item.

More than one item may be selected by dragging the mouse over the desired items (NOT
in the grey area to the left of the item list).

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 86

An item (or more items) may be moved to a new position in the item list by dragging in
the grey area to the left of the list.

The two last columns contain information about saved coordinate positions and special
item attributes (e.g. cursor fields) making it easier to keep an overview of the situation.

ITEM DATA PANEL

The actual item editing is made in this panel. It contains a number of sub-panels
organized vertically. The number and type of panels depends on the item type, but their
ordering is fixed. The following sub-panels can be shown:

Structure hierarchy sub-panel
All item types.

Allows quick movement to connected structures, either PARENT STRUCTURE or CHILD STRUCTURE. The
PARENT STRUCTURE button is active if the current structure was selected as a child of another
structure. The CHILD STRUCTURE button is visible if the current item calls another structure.
These buttons doesn’t edit anything, they are just convenient ways of navigating
between structures belonging to a common “family tree”.

Primary position sub-panel
Item types: Text, Paragraph, Pixel, Line, Framed rectangle, Filled rectangle, Bitmap,

Structure call, Indexed structure call, Variable, Variable paragraph, Active
area, Clipping rectangle, and Touch area.

Edits the primary coordinate pair (X1,Y1). Coordinates has (0,0) at the top left corner of
the display, with X coordinates running to the right, and Y coordinates running down. The
following parameters can be edited for each coordinate:

• Coordinate value. 16 bit, can be negative too.

• Mode. Can be:

� Absolute. The coordinate value is used directly.

� Relative. The coordinate value is added to the calculated coordinate of
the previous item. For item zero it is added to the origo coordinate value.

� Relative to start. The coordinate value is added to the starting
coordinate of the previous item. This is e.g. the left edge of a text (or top
in case of Y coordinate). This is not the same as the calculated coordinate
of the previous item, if that item e.g. contains a centered text, the
calculated coordinate would then be at the centre of this text.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 87

� Relative to end. The coordinate value is added to the starting
coordinate of the previous item. This is e.g. the right edge of a text (or
bottom in case of Y coordinate).

• Table. Fetches a coordinate from the Position window.

• Variable. Fetches a coordinate from a variable value. The variable must be of an
integer type. The value can be edited using the small buttons below the variable
box.

• Memory load. Fetches a coordinate from a memory buffer. There are three
memory locations, individually for X and Y. The memory values are only stored
during the writing of one structure, including calls to child structures. When
structure writing begins all memory buffers are reset to zero.

• Memory save. Saves the current coordinate value in one of the three memory
locations.

The calculated coordinate is a sum of all contributions (previous coordinate, relative
coordinate, etc.), the calculation can be viewed at the right.

Secondary position sub-panel
Item types: Paragraph, Line, Framed rectangle, Filled rectangle, Variable paragraph,

Active area, Clipping rectangle, and Touch area.

Edits the secondary coordinate pair (X2,Y2). It is almost identical to the primary
coordinate pair, except that relative coordinates are not relative to the previous item, but
relative to the primary coordinate pair (handy for the size of boxes).

Structure call sub-panel
Item types: Structure call and Indexed structure call.

Selects a structure for calling, either by name and index number (direct structure call), or
by name only (indexed structure call). The JUMP TO STRUCTURE button does exactly the same as
the CHILD STRUCTURE button. If a selected structure does not exist (deleted after selection, or
index doesn’t exist) a small warning () is shown. This is maybe not an error, at
least not if the structure call is indexed. A direct structure call displaying this warning
certainly deserves attention.

Variable sub-panel
Item types: Indexed structure call, Variable, and Variable paragraph.

Selects a variable for the indexed structure call or for displaying. The value can be edited
using the small buttons below the variable box. The C button copies the variable name to

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 88

the Windows clipboard, with the text GuiVar_ added before it. This ensures easy pasting
into target system C code.

Active area sub-panel
Item types: Active area.

Contains only a check box that determines if the coordinate system origo shall be moved
to the active area upper left corner, or left as is. The coordinate move is only in effect for
items following the active area item.

Clipping sub-panel
Item types: Clipping rectangle and Active area.

Contains only a check box that determines if the clipping action is active.

Touch area sub-panel
Item types: Touch area.

The touch area number can be set. The allowed range is 0-255. This number is used in
the easyGUI library when referencing to individual touch areas. Any numbering scheme
can be used, even several touch areas with the same number, if desired.

Alignment sub-panel
Item types: Text, Paragraph, Line, Framed rectangle, Filled rectangle, Bitmap, Structure

call, Indexed structure call, Variable, Variable paragraph, Active area,
Clipping rectangle, and Touch area.

Edits the horizontal alignment of the item. There are five alternatives:

• No change. Keeps the alignment setting currently in use.

• Left adjust. The item is placed so that its left edge is at the calculated X
coordinate.

• Centre. The item is placed so that it is centered over the calculated X coordinate.

• Right adjust. The item is placed so that its right edge is at the calculated X
coordinate.

• From X1 table. Takes the alignment defined in the Position function for the table
position defined under coordinate X1.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 89

The vertical alignment cannot be freely selected. Texts are placed with their Base line
over the calculated Y coordinate. Other objects have their top at the calculated Y
coordinate.

Foreground color sub-panel
Item types: Text, Paragraph, Pixel, Line, Framed rectangle, Filled rectangle, Structure

call, Indexed structure call, Variable, and Variable paragraph.

Selects the foreground and bar foreground colors. There are five alternatives:

• No change. Keeps the color currently on use.

• Pixel ON. This color is set in the display parameters function. Normally it means
a dark pixel in monochrome systems, but could mean the opposite in inversed
systems (light text on dark background).

• Pixel OFF. This color is set in the display parameters function.

• Color. The color can be freely selected from the possible colors on the target
system, depending on the currently selected color mode and color depth. Not
relevant in monochrome target display systems.

• Invert. Uses the current background color.

The button shows a window for color selection. Only applicable when the “Color”
type has been selected. Appearance of the color selection window depends on the
currently selected color mode and color depth in Project parameters. How to operate the
color selection window is also explained there.

The bar foreground color is used for cursor fields and scroll lines, when these are active,
i.e. selected. In previous versions of easyGUI the foreground and background colors were
merely swapped, that corresponds to both foreground bar color and background bar color
being set to Invert. If the item in question is not used in cursor fields/scroll lines the bar
foreground color has no effect.

Background color sub-panel
Item types: Text, Paragraph, Framed rectangle, Structure call, Indexed structure call,

Variable, and Variable paragraph.

Selects the background and bar background colors. There are six alternatives:

• No change. Keeps the color currently on use.

• Pixel ON. This color is set in the display parameters function. Normally it means
a dark pixel in monochrome systems, but could mean the opposite in inversed
systems (light text on dark background).

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 90

• Pixel OFF. This color is set in the display parameters function.

• Color. The color can be freely selected from the possible colors on the target
system, depending on the currently selected color mode and color depth.

• Invert. Uses the current foreground color.

• Transparent. No background is drawn.

The button shows a window for color selection, just like explained above for
foreground color.

The bar background color is used for cursor fields and scroll lines, when these are active,
i.e. selected. In previous versions of easyGUI the foreground and background colors were
merely swapped, that corresponds to both foreground bar color and background bar color
being set to Invert. If the item in question is not used in cursor fields/scroll lines the bar
background color has no effect.

The area controls the addition of an extra pixel row or column, to make the
background more prominent, and to allow the background to fully contain e.g. a “g”
letter, without the bottom of the “g” touching the background border. One or more of the
four rectangles surrounding the “Border pixels” text can be clicked. If a rectangle is black
it means that an extra pixel row/column is added on that side. Example:

 Normal setting ()

 - versus:

 Extra bottom row of pixels ()

Border pixels also works for background boxes.

Text sub-panel
Item types: Text, Paragraph, Structure call, Indexed structure call, Variable, and Variable

paragraph.

Controls the appearance of texts and variables. The following parameters can be set:

• Text box (Text items only). The actual text. The button opens a small window
allowing simultaneous editing of all languages in the project for the item, and
furthermore allows selection of another language as the current. The button is
only enabled if translation is on for this item.

• Translation checkbox (Text items only). Determines if the text should be
translated (all languages defined in the project) or only be kept in one version
(the primary language, normally English) because the text is part of e.g. a service
page not needing translation.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 91

• Character set button (Text items only). Shows a window containing all available
characters in the selected font. Select characters by double-clicking them. The
character set window can also be used the see the character code for a specific
character already in the text. Place the cursor just before the character in
question, and invoke the CHARACTER SET button. The same character will be selected in
the window, and its character code can then be inspected.

• Character set override (Text and Variable items only, ANSI character mode
only). Selects a specific character set, disregarding the character set in effect due
to language selection. Can be used in e.g. a language selection list, where
Japanese should be written in Katakana, no matter which language (and thereby
character set) is active. Should normally be selected off (“-” setting).

• Font. Can be set to any font which has at least one character included in the
project (through the font selection function), or can be set to “No change”
meaning that the currently selected font is used. It is easier to later change a font
if only the first of a number of contiguous items selects a specific font, while the
rest has the “No change” setting.

• Style. Select the writing style as:

� No change. Keeps the writing style currently on use.

� Fixed spacing. All characters occupy the same horizontal space (Courier
style).

� Proportional. Normal proportional writing is used.

� PS numerical. Special numerical proportional writing is used, see font
chapter.

• Underlining. Is selected in a checkbox. The size and placement of underlining is
determined by font parameters.

• Background box (not Paragraph items). A background box is a special kind of
background drawing. A box is drawn in the background color with the width and
height as specified. Background boxes are useful for e.g. menus arranged
vertically, so that each menu item has the same background width when selected.
Example: Two menu items arranged vertically (“Preparation” and “Configuration”)

“Preparation” selected:

“Configuration” selected:

Both texts are centered, and have background box widths of 75 pixels.

Another use is when dynamically changing texts are shown, e.g. by using an
indexed structure call item, or for variables. To make sure the old text gets erased
when displaying a new text in the same position the item can be supplied with a
background box of sufficient size to cover the largest possible text. The individual

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 92

texts in the called structures then only needs a foreground color, the background
color should be set to "Transparent". This also avoids any unnecessary
background drawing, i.e. drawing first a background box, and then a normal
background in the same position, which would waste processor time.

Parameters comprises of a checkbox (Background box on/off) and three edit
boxes, specifying the background box width in pixels, background box height
above text baseline in pixels, and finally background box height below text
baseline in pixels. The two last parameters (background box heights) can be set
to zero, in which case the height above and/or below the text baseline will be
equal to normal background drawing.

Background boxes are normally (but not necessarily) used in conjunction with
centered texts, as in the above example.

• Blinking text field. If a text is marked as Blinking it can also be assigned a
number, just like cursor fields. In the target code the function
GuiLib_BlinkBoxMarkedItem can then be used to blink single characters in the
text, or the complete item text. The function GuiLib_BlinkBoxStop stops blinking
again.

Paragraph sub-panel
Item types: Paragraph and Variable paragraph.

Selects special Paragraph settings regarding alignment and line height:

• Horizontal alignment. There are three alternatives:

� Left. All text lines start at the left edge of the paragraph box.

� Center. All text lines are centered between the left and right edges of
the paragraph box.

� Right. All text lines end at the right edge of the paragraph box.

• Vertical alignment. There are three alternatives:

� Top. The first text line is placed at the top of the paragraph box.

� Center. The text lines are centered between the top and bottom edges
of the paragraph box.

� Bottom. The last text line is placed at the bottom of the paragraph box.

• Line height. Determines the distance between lines in the Paragraph box, and
hence the number of lines visible in the box.

The Alignment sub-panel described earlier is also visible for Paragraph items, but the
alignment selected there only affects the positioning of the complete Paragraph box, not
the placement of its contents inside the box.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 93

Bitmap sub-panel
Item types: Bitmap.

Selects the bitmap file for display. The file can be specified with or without a path. Files
without a path is read from the folder in which the project file (*.gui) resides. A partial
path may also be entered, in which case it is taken as relative to the project file folder.

The bitmap is not stored in the project file, only its path and filename. Changing the
bitmap therefore influences how it looks in easyGUI. The path and filename can be edited
directly, or selected by pressing the BROWSE button.

The REFRESH button reads the bitmap again, and can be used to force a re-read, if the
bitmap has been edited. Jumping to another structure, and back again, also forces a re-
read.

The size of the bitmap in pixels, and its filename without the path, is shown above the
file name edit box.

If the bitmap is not found a warning is shown, and the bitmap is drawn as a black
rectangle with white fill, and a black cross covering it.

Rectangle sub-panel
Item types: Framed rectangle and Filled rectangle.

Displays rectangle size, based on the current coordinate settings. Framed rectangle items
also show an edit box, allowing selection of border thickness in pixels.

Variable formatting sub-panel
Item types: Variable formatter.

Determines formatting for numeric variables. The following parameters can be edited:

• Field width. The number of digits allowed in the numeric representation of a
variable. Zero indicates variable field width, i.e. the field width is made just
sufficient to display the variable.

• Decimals. Determines the number of decimals after the decimal point. The
setting works for both integers and floats. For integers the decimal point ("." or
",") is simply inserted to display the number of decimals, e.g. two decimals shows
the value 123 as "1.23". Zeroes are inserted if needed: The value 23 is shown as
"0.23". The type of decimal point ("." or ",") is set in the Parameters window.

• Alignment. Determines how the text is placed inside the field width. Can be left
adjusted, centered, or right adjusted. Don't confuse this alignment with the
normal alignment for texts, boxes, etc. The formatter alignment determines how

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 94

the digits/characters are placed in the field width. With the field width set to zero
(dynamic width) this setting has no effect.

• Format. Can be decimal, hexadecimal, exponential, and time (HH:MM). The
exponential notation works only on float variables. The time format works only on
integer variables, and uses the variable value as a minute count.

• Always show sign. If set it will always show the sign, even for positive values
("+123"). Zero is shown as "+0". Has no effect on unsigned variables.

• Zero padding. Pads the value with leading zeroes. With the field width set to
zero (dynamic width) this setting has no effect. Works only with alignment set to
right adjusted.

The formatter parameters have no effect on string variables.

Miscellaneous sub-panel
Item types: Text, Paragraph, Pixel, Line, Framed rectangle, Filled rectangle, Bitmap,

Structure call, Indexed structure call and Variable.

Contains various special item flags:

• Cursor field. If checked the item is considered a cursor field by the target
system. The cursor No. can be selected in an edit box to the right of the check
box (only visible when the check box is checked). Cursor fields consume a
sizeable amount of memory in the target, because a copy of the complete item
with all parameters must be made. When creating C code easyGUI finds the
highest cursor number in the project, and assigns space on the target system
based on this number. Cursor numbers should therefore always be kept as low as
possible, i.e. always start on zero, but a missing number in a set of cursor fields is
handled correctly by the target system, thereby allowing dynamic parts of the
display containing cursor fields to be invisible without corrupting the cursor
system. Cursor field visibility can be checked in the left part of the display panel.

Active cursors are drawn on the target system by reversing foreground and
background colors. It is therefore essential not to make cursor fields transparent,
i.e. without background.

• Auto redraw. If checked instructs the target system to automatically refresh the
item periodically. The timing is controlled by the target system, easyGUI just
makes a copy of each Auto redraw item and inserts it in a list. Each time the
target system GuiLib_Refresh function is called the Auto redraw items are
checked, and maybe redrawn, depending on the setup described below. An Auto
redraw item can be a single variable, or e.g. a structure call, consisting of perhaps
a variable and its associated unit text.

Keep in mind that Auto redraw items should as a rule always redraw their
background, because e.g. a transparent variable will end up looking like a black
box drawing more and more foreground pixels on a background that never gets
erased.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 95

Another important thing to consider when designing structures with Auto redraw
features is the fact that the Auto redraw item never gets recalculated, it is merely
redrawn with the coordinates, colors, etc. calculated when its parent structure
was initially displayed. So, if e.g. a coordinate is controlled by a variable it is not
recalculated each time the GuiLib_Refresh function redraws the item. However,
this fact can be circumvented, by making the Auto redraw item a structure call,
which calls another structure containing e.g. variable controlled coordinates. This
is because complete structures that are to be redrawn do get recalculated. It all
stems from the fact that only the Auto redraw item is saved in the list of Auto
redraw items, not its eventual underlying structures, which in principle could be a
big construction of multi-level structures in structures.

There is two fundamentally different ways of using the Auto redraw feature:

� Continuous updating. All Auto redraw items are continuously updated,
each time the GuiLib_Refresh function is called. This is the default
setting.

� Update on changes. Auto redraw items are updated only if the controlling
variable / variable to be displayed has changed, or if the item does not
involve a variable.

The selection between these two methods is done in the Parameter window, under
the Operations tab.

If Update on changes has been selected as the Auto redraw controlling method
there is an additional way of controlling Auto redraw items:

This variable reference allows items not inherently using variables (all visible
items except Indexed structure call and Variable items) to be controlled
conditionally by a variable. A suitable variable is selected, and the Auto redraw
item will then be updated each time the GuiLib_Refresh function detects that the
variable value has changed.

• Mark item as. A special marking attribute can be assigned to an item:

� Nothing (“-” setting). Normal setting.

� Scroll box. Defines a scroll box for the target system scroll routines.
Only makes sense when used on item types Framed rectangle, Filled
rectangle, Structure call, Indexed structure call or Clipping rectangle.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 96

� Scroll bar. Defines a scroll bar () for the target system scroll
routines. Only makes sense when used on item types Framed rectangle,
Filled rectangle, Structure call, Indexed structure call or Clipping
rectangle. The scroll bar has a fixed appearance, apart from the scroll
indicator (), with arrows at the top and bottom. The bar width is
determined by the item defining the bar outline. In easyGUI the scroll
indicator is always shown in the same vertical position. The indicator is
only dynamic on the target system. Only vertical scroll bars are
supported.

� Scroll line. Defines a scroll line for the target system scroll routines.
This attribute is normally assigned to a structure call, where the structure
called defines all fields and text of a single line in the scroll box.

When the Scroll line attribute is selected an extra edit box appears to the
right, allowing selection of line height in the scroll box. This determines
the distance between lines in the scroll box, and hence number of lines
visible in the box. It is not necessarily the number of lines actually shown
in the scroll box on the target system, it merely gives the maximum
number of lines visible at any time. Only complete scroll lines are shown
in a scroll box.

It will be convenient to specify a background box in the scroll line item
(normally a structure call item) to make sure that a scroll line is
completely redrawn each time the scroll box is updated.

Like cursor fields, the active scroll line is drawn on the target system by
reversing foreground and background colors. In easyGUI any scroll line
can be shown inversed, by using the “Show scroll lines” control in the
Display panel.

DISPLAY PANEL

The display panel shows a representation of the target system display, lacking only
certain dynamic features as e.g. scroll box operation. All pixels drawn corresponds 1:1
with the real display.

A cursor cross is shown, whenever the mouse is over the display area. Along with it the
coordinates can be seen, both right next to the cross, and at the left of the panel:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 97

Along the left edge are a number of controls, allowing different views and help systems
to be employed:

• Zoom. Can be set to 1x, 2x, 3x and 4x. The 1x setting maps PC screen pixels
directly as target system pixels, creating a very small display.

• Show display border. If checked, a thin line is drawn around the active area of
the display, making it easier to differentiate between active pixels and border
area:

Off: On:

• Show undrawn area. Areas not touched by the current structure can be
marked:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 98

Off: On:

The color used for the unmarked areas is defined in the Parameters window,
Simulated colors tab page.

• Show active area. Draws markings for areas of the display lying outside the
active area. Both the general display active area (defined in the Parameters
window, Basics tab page), and active areas defined through Active area items, are
indicated. There are four different ways of indicators, with one pair using solid
gray, and one pair using red hatching, and with one solid gray / red hatching pair
showing behind the items, and one pair showing in front. The following example is
a display, where a large part is physically masked out on the target system. The
active area feature can therefore conveniently indicate the visible part of the
display:

Off:

Red hatching, in front of items:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 99

Solid gray, in front of items:

Red hatching, behind items:

Solid gray, behind items:

The small STYLE button next to the Show active areas checkbox cycle through the
four possible indicator styles, in the order shown above.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 100

• Show positions / relations. Draws blue boxes around all items, a little dot at
the calculated position for each item, and draws interconnecting lines between
items connected by relative coordinates:

Off: On:

This structure starts with a white rectangle filling the entire display (in order to
erase it), it can be seen as the outer thin rectangle with a little dot at the left top
corner (The primary coordinate). The three middle texts (“Do NOT turn off”,
“power during” and “flash programming”) are centered (note dots in the middle,
at the Base lines), and the two lowest texts are placed relative to the top text
(note interconnecting lines). Around each item is a box, surrounding all pixels
belonging to the item. Note that the boxes around the three middle texts just
grazes the character pixels, they doesn’t indicate background extents. This is
because the texts are drawn transparent, i.e. with no background. If the three
texts had background drawing enabled (Back ground color = Pixel OFF) they
would look like:

 (look carefully, the differences are there!)

The boxes overlap because the texts have been placed rather close to each other.
In fact, without transparent writing the “g” at the end of the middle text is partly
cut off by the last text!

• Show background boxes. Draws grey boxes around all background boxes,
showing their extends:

Off: On:

• Highlight selected item(s). The current item (or items) is highlighted by a
yellow box (Maybe difficult to see in the example, it is the top of the three middle
texts):

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 101

Off: On:

• Highlight cursor fields. Every cursor field is highlighted by a purple box and
shading, and a little number at the top left indicating the cursor number:

Off: On:

• Highlight auto redraw items. Every auto redraw item is highlighted by a green
box and shading:

Off: On:

• Highlight translation. Every text selected for translation is highlighted by a
brown box and shading:

Off: On:

• Highlight touch areas. Every touch area is highlighted by an amber box and
shading:

Off: On:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 102

• Highlight blink text fields. Every item marked as a blinking item is highlighted
by a cyan box and shading:

Off: On:

• Show cursor field. One or all cursor fields can be shown inversed, as on the
target system:

No cursor field selected:

Cursor field zero selected:

All cursor fields selected:

• Show scroll lines. One or all scroll lines can be shown inversed, as on the target
system, in the same way as for cursor fields:

No scroll lines selected:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 103

Scroll line zero selected:

All scroll lines selected:

The above settings may be combined as desired, but setting too many options on will
make the display rather unreadable.

USE OF TOUCH AREAS

easyGUI separates the tasks of handling the touch interface hardware, and the actual
handling of touch events.

easyGUI handles events from the touch interface, and handles eventual coordinate
conversion from touch interface coordinates to display coordinates, should these differ.

In the following it is assumed that activating the touch interface produces an event with
a coordinate of the touch position. This coordinate need not coincide with the display
coordinates, but easyGUI needs to know how to convert from touch interface coordinates
to display coordinates.

The proper sequence for implementing a touch interface is:

1 Touch interface hardware is tested and debugged.

2 easyGUI touch interface is trained in coordinate conversion, if needed.

3 Events from the touch interface hardware is fed to the proper easyGUI library
routines, and easyGUI checks if any touch area falls under the position where a
touch event happened. If so, the easyGUI library returns the touch area number, as
set up in the Structure editor.

1 - Touch interface hardware

The touch interface hardware is not controlled by easyGUI, and can therefore be
implemented in any way found suitable.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 104

2 - Coordinate training

The touch interface coordinate training only needs to be accomplished at system power
on. Preferably the values should be stored, so that coordinate training can be reduced to
a minimum.

On systems where the touch hardware coordinates and display coordinates coincide by
definition, training is not necessary.

There are two variants of coordinate training:

• Two diagonal corner coordinate positions. Correspondence between touch
interface coordinates and display coordinates are defined for two diagonally
opposing positions:

P1

P2

The positions can occupy any two opposing corners.

In this conversion mode coordinates are converted individually in the X and Y
directions, i.e. X coordinate conversion is not affected by the Y coordinate, and
vice versa.

• Four corner coordinate positions. Correspondence between touch interface
coordinates and display coordinates are defined for four positions, one near each
corner:

P1

P2
P3

P4

In this conversion mode when coordinates are converted the X conversion factor
is affected by the Y coordinate, and vice versa. Four corner conversion mode
therefore results in superior conversion accuracy, compared to two corner
conversion mode. However, if it is guaranteed by the touch interface hardware
that the X and Y coordinate directions are precisely as the display coordinate
directions (i.e. no tilting), only two corner conversion mode is necessary.

The positions should be placed as near the corners as possible. Supplying positions lying
nearer to the display center will reduce coordinate conversion precision.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 105

Touch interface coordinates must lie in the range -32768 ~ 32767.

The coordinate training is accomplished by calling the GuiLib_TouchAdjustReset and
GuiLib_TouchAdjustSet functions. GuiLib_TouchAdjustReset resets any previous
conversion setup, and should always be called before supplying coordinates for the
conversion function. GuiLib_TouchAdjustSet is then called two or four times, depending
on the desired conversion strategy.

Two corner adjustment example:

 :
 GuiLib_TouchAdjustReset();
 GuiLib_TouchAdjustSet(12, 13, 160, 80);
 GuiLib_TouchAdjustSet(230, 11, 2240, 40);
 :

The touch interface coordinates (160,80) corresponds to display coordinates (12,13),
while touch interface coordinates (2240,40) corresponds to display coordinates (230,11),
i.e. upper left and lower right corners have been specified.

Four corner adjustment example:

 :
 GuiLib_TouchAdjustReset();
 GuiLib_TouchAdjustSet(12, 13, 16, 16);
 GuiLib_TouchAdjustSet(230, 11, 224, 8);
 GuiLib_TouchAdjustSet(12, 119, 13, 115);
 GuiLib_TouchAdjustSet(233, 121, 236, 117);
 :

The touch interface coordinates (16,16) corresponds to display coordinates (12,13),
touch interface coordinates (224,8) corresponds to display coordinates (230,11), touch
interface coordinates (13,115) corresponds to display coordinates (12,119), and finally
touch interface coordinates (236,117) corresponds to display coordinates (233,121).

The ordering of the GuiLib_TouchAdjustSet function calls is irrelevant.

For a simple system where touch and display coordinates are always in agreement, only
GuiLib_TouchAdjustReset needs to be called. Strictly speaking even this call is not
necessary, because it is also part of the GuiLib_Init function, which should always be
called when initializing the system.

3 - Event handling

Each time the GuiLib_ShowScreen function is used to show an easyGUI structure the
currently registered touch areas are lost. New touch areas found in the structure being
displayed are remembered in a list.

When an event from the touch interface hardware is detected the GuiLib_TouchCheck
function must be called. It shall be supplied with the touch event coordinates for the
event (in touch interface hardware coordinates). GuiLib_TouchCheck first converts the
touch event coordinates to display coordinates, using the conversion strategy specified

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 106

earlier. It then searches through the current list of touch areas, checking if the
coordinate position lies inside one of the touch areas. The first touch area found to
include the event coordinate is selected as a hit, and its touch area number returned by
the GuiLib_TouchCheck function. If GuiLib_TouchCheck did not find any touch areas at
the touch event coordinates it returns -1.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 107

12 C CODE GENERATION

The final stage in easyGUI is generation of actual target system C code. This is
accomplished in the code generation window:

On the left the destination path can be set. A partial path may be entered, in which
case it is taken as relative to the folder in which the project file (*.gui) resides. The path
box may also be left empty, in which case all target system files are placed in the project
file folder. The BROWSE button allows selection of any folder, while the SINSERT PROJECT FILE PATH
button simply inserts the path to the project file, making it easy to edit it.

C file extension selects the file extension for C files. Most compilers use c, while some
C++ compilers use cpp. Interface files are always treated as having extension h.

Below is a selection between normal mode and PC simulator mode:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 108

• Target (normal). This setting is used for all normal C code generation for the
target system.

• PC simulator. This setting shall only be used when generating code for the
easyGUI PC Simulation Toolset (see the easyGUI PC Simulation Toolset chapter).
The setting overrides some of the compiler setup settings, in order to easily
produce code suited for PC usage. To make sure C code generating is not left in
this setting when intending to generate C code for the target system a small
warning () is shown.

The target system path can optionally be different for normal and PC simulator
modes. This is often handy.

The Uncompressed font option instructs easyGUI to generate font data uncompressed,
i.e. all characters in a font takes up the same space. Normally this option should be left
unchecked, ensuring that easyGUI will compress all font data as much as possible, saving
considerable ROM space on the target system. The only reason for using uncompressed
font data is if manual manipulation of font data is needed in the target system, e.g. when
dynamically reading in font data during execution.

At the right are two panels named “Fonts” and “Structures & variables”. Under most
circumstances only structure data, and perhaps variable data, has been edited, and
generation of font data is therefore not needed. Each of the three types of data are
placed in its own set of c and h files, called GuiFont.c and GuiFont.h, GuiStruct.c and
GuiStruct.h, and finally GuiVar.c and GuiVar.h. These files should be included in the C
compiler setup. The content of each file is generated on request by pressing the
appropriate button. Fixed code can be added at the beginning, and at the end of each
file. This code is entered using the buttons to the right. The code could be compiler
directives, include directives, copyright notices, etc. The code is saved in the easyGUI
database.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 109

13 IMPORT / EXPORT

The import / export function allows the copying of data between easyGUI projects. The
window is divided into three parts:

On the left is the current project.

In the middle is a number of controls and settings for the import / export process.

On the right is the external project, closed in the above example.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 110

CURRENT PROJECT PANEL

The current project panel is always open, and displays all components of the project as a
tree:

• Fonts. This branch can be expanded, showing each individual font in the project.

• Parameters. Contains all basic project setup, like display size, compiler settings,
etc.

• Languages. Contains all defined languages. Only language setup is included, not
translated texts. Texts are part of the structures.

• Positions. This branch can be expanded, showing each individual fixed position in
the project.

• Variables. This branch can be expanded, showing each individual variable in the
project.

• Structures. This branch can be expanded, showing each individual structure in
the project.

• C-code setup. All fixed headers / footers, and other C-code generation setup.

A single component (Parameters, a single font, etc.) is marked by clicking it. Several
components are marked by holding the Ctrl button, and clicking the desired components.
Fonts, positions, variables, and structures can be marked en masse, by clicking the root
of the component type.

EXTERNAL PROJECT PANEL

The external project can be of two variants:

• Project. Another project, just like the current project.

• Temporary project. This is a special temporary holder of data, always present.

Before importing or exporting can happen the external project must be opened, by
pressing the OPEN PROJECT button. This sets up the right panel in the same way as the left
panel:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 111

Only difference is that two buttons are present below the tree:

• DELETE OBJECT deletes the selected object.

• DELETE EVERYTHING deletes all objects.

These two buttons are only relevant for the temporary project. They allow the temporary
project to be cleaned for objects. Observe that Parameters and C-code setup cannot be
deleted, these types of objects are always present in a project.

The CLOSE PROJECT button at the top closes the project, and returns to the initial display,
where selection between project / temporary project can be made.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 112

MIDDLE PANEL - CONTROLS AND SETTINGS

The middle panel controls the importing / exporting. A number of controls and settings
are available:

• EXPORT OBJECT button starts exporting of objects marked in the left panel. Objects
marked in the right panel are irrelevant.

• Duplicates. Determines how duplicates are treated. They can be either
overwritten, or skipped. This setting is irrelevant for Parameters and C-code
setup, as these types of objects are always present in a project.

• Font handling. When importing / exporting fonts either the complete font, or
only a subset of characters, can be copied.

• Structure handling. When importing / exporting structures it can be selected
whether other structures used by the selected structures shall also be included in
the copying. Furthermore, positions and variables used by the structures can also
be included in the copying.

• IMPORT OBJECT button starts importing of objects marked in the right panel. Objects
marked in the left panel are irrelevant.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 113

14 HOW TO SET UP YOUR SYSTEM

MINIMUM RAM AND ROM REQUIREMENTS

Because easyGUI is a purely graphic system it must have access to a reasonable amount
of RAM and ROM to function properly. How much RAM and ROM cannot be stated
explicitly, because it depends on the complexity of the user interface build in easyGUI,
but a couple of approximate levels can be stated:

• RAM usage: 2KB + (Display width × Display height × Bits per color) / 8.

Examples:

� 128×64 pixels monochrome: 2KB + (128×64×1)/8 ≈ 3KB

� 240×128 pixels monochrome: 2KB + (240×128×1)/8 ≈ 6KB

� 320×240 pixels monochrome: 2KB + (320×240×1)/8 ≈ 12KB

� 128×64 pixels 16 color: 2KB + (128×64×4)/8 ≈ 4KB

� 240×128 pixels 256 color: 2KB + (240×128×8)/8 ≈ 33KB

• ROM usage: 21KB + font data + structure data.

Examples:

� Low complexity GUI (50 structures), 2 full text fonts, 1 partial big font, 2
icon fonts: 30KB~50KB depending on display size.

� Medium complexity GUI (250 structures), 2 full text fonts, 2 partial big
fonts, 4 icon fonts: 60KB~100KB depending on display size.

� High complexity GUI (400 structures), 4 full text fonts, 2 partial big
fonts, 6 icon fonts: 100~150KB depending on display size.

These sizes are by no means definitive, they are only meant as a rough guideline.

OPERATING SYSTEM

easyGUI places only limited demands on the core of your target system. It can function
with systems not having an operating kernel at all, up to systems employing a full-blown
operating system. Its only demand is some kind of systematic calling based on a timer,
to let easyGUI process the various kinds of dynamic operations:

• Low level drawing.

• High level structure drawing.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 114

• Auto updating of fields.

• Cursor drawing.

• Blinking items.

• Scrolling.

Your target only needs to call a single easyGUI function regularly:

GuiLib_Refresh();

This routine handles all the activities mentioned above in easyGUI. Calling the refresh
function more often leads to a more responsive system, but above a certain point there
is no further advantage in increasing the frequency of calling. In most systems it will
suffice to call the refresh function 5 times a second, i.e. every 200ms. Do not call it more
often than every 10ms, and only so often on powerful systems with lots of available
resources. 5 times a second may sound slow, but this is often fast enough, and ensures
that the user experiences an adequately responsive system.

It is also feasible to call GuiLib_Refresh() on demand, e.g. after each new structure is
displayed, and after any change of variables that affects structures. This is marginally
quicker than the above described approach, but is not as elegant, and more error-prone.

SETTING UP THE SYSTEM FOR EASYGUI USE

Before easyGUI can be of any use your target system must be set up. The following
items must be successfully implemented:

1 Physical display connection.

2 Setting up easyGUI for your display type.

3 Display control functions.

4 Compiling the project.

5 easyGUI interfacing.

When these items are properly implemented you are ready to start developing your GUI -
your very own Graphical User interface.

1 - Physical display connection

The display can be connected using port access, direct memory access, or a combination
hereof. Most small displays are simply connected via a number of ports, but the most
efficient connection depends on your actual hardware. It is irrelevant to easyGUI how this
connection is made, as long as a single requirement is satisfied: easyGUI must be able to

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 115

address individual pixels on the display, by sending display RAM contents from its own
display buffer in normal system RAM to the internal display controller RAM buffer.

It is beyond the scope of this manual to give details on how to make a proper connection
of the display, so this issue will not be covered further.

2 - Setting up easyGUI for your display type

It is essential that easyGUI is properly configured for your specific type of display and
compiler. Enter the Parameters window:

Enter proper values in the various parameter fields. The parameters are explained in
detail in the Project parameters chapter. Observe that there are multiple tabs with
parameters.

After setting the values go into C code generation:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 116

- and select Make All. The units GuiConst.h, GuiFont.c/h, GuiVar.c/h and
GuiStruct.c/h are created. The important unit initially is the GuiConst.h unit, which
contains the basic easyGUI settings of your system.

3 - Display control functions

The software must be able to control the display. This is done in the GuiDisplay unit.

The following actions must be implemented:

• Display initialization.

• Display writing.

• Light and contrast control.

easyGUI does not require display reading.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 117

Display initialization

The display must be properly initialized. This involves:

• Setting up ports and/or addressing.

• Enabling the display.

• Selecting a purely graphics mode.

• Setting start address and address range.

• Initializing display memory.

These initial activities cannot be supplied by easyGUI in a ready-to-use form, as the
actual routine depends on the type of display controller. The supplied GuiDisplay unit in
the easyGUI library folder must therefore be edited to fit the selected display controller in
your target system. Make a copy of the supplied GuiDisplay unit into your target system
source code folder, and make adjustments to the GuiDisplay_Init() function as
required.

Selecting a display driver

At the top of GuiDisplay.c is a number of compiler directives. One of them should be
activated, corresponding to the desired display driver. When the target system is up and
running the other display drivers may be deleted, if desired.

LH75401 display driver

Description: This driver uses one LH75401 controller with built-in
LCD interface. Frame buffer is for 16 bit memory
width. Horizontal resolution must by divisible by 16.
Graphic modes up to 640x480 pixels.

Compatible display controllers: LH75400, LH75410, LH75411.

easyGUI setup: Horizontal bytes.
Bit 0 at right.
Number of color planes: 1.
Color mode: Direct color mode.
Color depth: 12 bits.
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: -

PCF8548 display driver

Description: This driver uses one PCF8548 controller with on-chip
generation of LCD supply and bias voltages. LCD

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 118

display in I2C bus interface. Graphic modes up to
102x65 pixels.

Compatible display controllers: -

easyGUI setup: Vertical bytes.
Bit 0 at bottom.
Number of color planes: 1.
Color mode: Grayscale.
Color depth: 1 bit (B/W).
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: Port addresses (P_x) must be altered to correspond
to your µ-processor hardware and compiler syntax.

T6963 display driver

Description: This driver uses one T6963 controller. LCD display in
8-bit parallel interface. Graphic modes up to 80x32
pixels. Combination of number of columns and
number of lines must not cause the frequency to
exceed 5.5MHz.

Compatible display controllers: AX6963, WG24064

easyGUI setup: Vertical bytes.
Bit 0 at bottom.
Number of color planes: 1.
Color mode: Grayscale.
Color depth: 1 bit (B/W).
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: Port addresses (_Pxx) must be altered to correspond
to your µ-processor hardware and compiler syntax.

SED1335 display driver

Description: This driver uses one SED1335 display controller. LCD
display in 8 bit parallel interface. Graphic modes up
to 640x256 pixels.

Compatible display controllers: S1D13700, S1D13305, RA8835

easyGUI setup: Horizontal bytes.
Bit 0 at right.
Number of color planes: 1.
Color mode: Grayscale.
Color depth: 1 bit (B/W).

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 119

Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: Port addresses (Px) must be altered to correspond to
your µ-processor hardware and compiler syntax.

HD61202 display driver

Description: This driver uses two HD61202 display controllers.
LCD display in 8 bit parallel interface. Graphic modes
up to 128x64 pixels.

Compatible display controllers: KS0108B/KS0107B, AX6108/AX6107,
NT7108/NT7107, S6B0108A/S6B0107A,
S6B0108/S6B0107, S6B0708/S6B0707,
KS0708/KS0707, S6B0708/S6B0707,
S6B2108/S6B2107

easyGUI setup: Vertical bytes.
Bit 0 at top.
Number of color planes: 1.
Color mode: Grayscale.
Color depth: 1 bit (B/W).
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 2.

Remarks: Port addresses (Px) must be altered to correspond to
your µ-processor hardware and compiler syntax.

SSD1815 display driver

Description: This driver uses one SSD1815 display controller with
on-chip oscillator. LCD display in SPI interface.
Graphic modes up to 135x65 pixels.

Compatible display controllers: KS07XX, S1D10605, S1D10606, S1D10607,
S1D10608, S1D10609, S1D15600, S1D15601,
S1D15602, S1D15605, S1D15705, S1D15707,
S1D15708, S1D15710, SED1565, S1D15605,
IST3015, NJU6570, NJU6575, NJU6673, NJU6675,
NJU6676, NJU6677, NJU6678, NJU6679, NT7501,
NT7502, NT7532, NT7534, ST7565S, KS0713,
KS0715, KS0717, KS0718, KS0719, KS0723,
KS0724, KS0728, KS0741, KS0755, KS0759,
S6B0713, S6B0715, S6B0716, S6B0717, S6B0718,
S6B0719, S6B0721, S6B0723, S6B0724, S6B0725,
S6B0728, S6B0755, S6B0759, S6B1713, SSD1805,
SSD1852,SPLC501, TL0313, UC1606.

easyGUI setup: Vertical bytes.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 120

Bit 0 at top.
Number of color planes: 1.
Color mode: Grayscale.
Color depth: 1 bit (B/W).
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: function Spi_SendData must be altered to correspond
to your µ-processor hardware and compiler syntax.

SSD0323 display driver

Description: This driver uses one SSD032 display controller with
on-chip oscillator. OLED/PLED display in 8 bit parallel
interface. Graphic modes up to 128x80 pixels.

Compatible display controllers: SSD01303

easyGUI setup: Horizontal bytes.
Bit 0 at right.
Number of color planes: 1.
Color mode: Grayscale.
Color depth: 4 bit (B/W).
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: Port addresses (Px.x) must be altered to correspond
to your µ-processor hardware and compiler syntax.

S1D13505 display driver

Description: This driver uses one S1D13505 display controller.
LCD display in memory mapped interface. Graphic
modes up to 800x600 pixels.

Compatible display controllers: -

easyGUI setup: Vertical bytes.
Bit 0 at bottom.
Number of color planes: 1.
Color mode: Direct color mode or via palette.
Color depth: up to 16 bits.
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: -

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 121

S1D13700 display driver

Description: This driver uses one S1D13700 display controller.
LCD display in 8 bit parallel interface. Graphic modes
up to 640x240 pixels.

Compatible display controllers: -

easyGUI setup: Horizontal bytes.
Bit 0 at right.
Number of color planes: 1.
Color mode: Grayscale.
Color depth: 1 bit (B/W).
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: -

S1D13705 display driver

Description: This driver uses one S1D13705 display controller.
LCD display in memory mapped interface. Graphic
modes up to 800x600 pixels.

Compatible display controllers: SED1375, S1D13706, SED1374, S1D13704,
SSD1906, SSD1905, S1D13A04.

easyGUI setup: Vertical bytes.
Bit 0 at bottom.
Number of color planes: 1.
Color mode: Via palette index.
Color depth: 8 bits.
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: -

S1D13706 display driver

Description: This driver uses one S1D13706 display controller.
LCD display in memory mapped interface. Graphic
modes up to 320x240 pixels.

Compatible display controllers: SED1375, S1D13705, SED1374, S1D13704,
SSD1906,SSD1905, S1D13A04.

easyGUI setup: Vertical bytes.
Bit 0 at bottom.
Number of color planes: 1.
Color mode: Via palette index.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 122

Color depth: 8 bits.
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: Make sure 2ms elapses from system power on, before
init routine is executed.

S1D13A04 display driver

Description: This driver uses one S1D13A04 display controller.
LCD display in memory mapped interface. Graphic
modes up to 320x240 pixels.

Compatible display controllers: -

easyGUI setup: Vertical bytes.
Bit 0 at bottom.
Number of color planes 1.
Color mode: Direct or via palette index.
Color depth: 8, 16 bits.
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontal: 1.

Remarks: -

LH155BA display driver

Description: This driver uses one LH155BA display controller. LCD
display in 8 bit parallel interface. Graphic modes up
to 128x64 pixels.

Compatible display controllers: -

easyGUI setup: Horizontal bytes.
Bit 0 at right.
Number of color planes: 1.
Color mode: Grayscale.
Color depth: 1 bit (B/W).
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: Port addresses (PTT) must be altered to correspond
to your µ-processor hardware and compiler syntax.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 123

ST7529 display driver

Description: This driver uses one ST7529 display controller. LCD
display in 8 bit parallel interface. Graphic modes up
to 255x160 pixels. It uses 3 bytes for 3 pixels mode.

Compatible display controllers: -

easyGUI setup: Vertical bytes.
Bit 0 at bottom.
Number of color planes: 1.
Color mode: Grayscale.
Color depth: 5 bit (B/W).
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: Port addresses (Pxx.x) must be altered to correspond
to your µ-processor hardware and compiler syntax.

S6B0741 display driver

Description: This driver uses one S6B0741 display controller with
on-chip oscillator. LCD display in 8 bit parallel
interface. Graphic modes up to 128x129 pixels.

Compatible display controllers: -

easyGUI setup: Vertical bytes.
Bit 0 at top.
Number of color planes: 1.
Color mode: Grayscale.
Color depth: 2 bits.
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: Port addresses (Pxx.x) must be altered to correspond
to your µ-processor hardware and compiler syntax.

NJU6450A display driver

Description: This driver uses two NJU6450A display controllers,
with each controlling half (left or right) of the display.
LCD display in 8-bit parallel interface. Graphic modes
up to 122x32 pixels.

Compatible display controllers: SED1520, AX6120, NJU6450, NJU6452, PT6520

easyGUI setup: Vertical bytes.
Bit 0 at top.
Number of color: planes 1.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 124

Color mode: Grayscale.
Color depth: 1 bit (B/W).
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 2.

Remarks: Port addresses (_P00, _P01, etc.) must be altered to
correspond to your µ-processor hardware and
compiler syntax.

UC1608 display driver

Description: This driver uses one UC1608 display controller. LCD
display in 8 bit parallel interface. Graphic modes up
to 240x128 pixels. Vertical resolution can be 96 or
128 pixels.

Compatible display controllers: -

easyGUI setup: Vertical bytes.
Bit 0 at top.
Number of color planes: 1.
Color mode: Grayscale.
Color depth: 1 bit (B/W).
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: Port addresses (Pxx.x) must be altered to correspond
to your µ-processor hardware and compiler syntax.

µPD161607 display driver

Description: This driver uses one µPD161607 display controller.
Serial SPI interface mode 2 is used for commands.
Frame transfer is used for display data. Graphic
modes up to 320x240 pixels.

Compatible display controllers: -

easyGUI setup: Horizontal bytes.
Bit 0 at right.
Number of color planes: 1.
Color mode: Direct color mode.
Color depth: 18 bits.
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.
RGB format depending on hardware wiring (e.g.
BBBBBB÷÷ GGGGGG÷÷ RRRRRR÷÷).

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 125

Remarks: There should be a 1ms delay both before and after
resetting the µPD161607. Spi_SendData function
must be altered to correspond to your µ-processor
hardware and compiler syntax. It shall send one byte
to the display controller. Enter suitable delay code for
the 30µs and 20ms wait periods. Make sure 2ms
elapses from system power on, before init routine is
executed.

RA8822 display driver

Description: This driver uses one RA8822 display controller with
built-in PLL module. LCD display in 8 bit parallel
interface. Graphic modes up to 240x160 pixels.

Compatible display controllers: RA8803

easyGUI setup: Horizontal bytes.
Bit 0 at right.
Number of color planes: 1.
Color mode: Grayscale.
Color depth: 1 bit(B/W).
Display orientation: As you like.
Display words with reversed bytes: Off.
Number of display controllers, horizontally: 1.

Remarks: Port addresses (Px.x) must be altered to correspond
to your µ-processor hardware and compiler syntax.

New drivers are constantly added to GuiDisplay.c, so if your display controller of choice
is not found in the above list it may still be included in GuiDisplay.c. If not, contact
easyGUI support.

Display writing

The GuiDisplay_Refresh() function transfers data from easyGUI's internal display
buffer in system RAM to the display controller's own internal RAM. This data transfer is
kept at a minimum, because most display controllers are rather slow to access. easyGUI
therefore checks which parts of the display has been altered since the last display data
transfer, and then only transfers the altered data. This data checking is done on a scan
line level, ensuring a very efficient system.

The function must go through all scan lines (horizontal or vertical, depending on display
controller type), and for each scan line transfer data from a starting position to an ending
position, if anything has changed on that particular scan line. The basic skeleton of the
function should therefore not be altered, only the actual display data writing. The
skeleton looks like:

void GuiDisplay_Refresh(void)
{
 GuiConst_INT16S X,Y;

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 126

 GuiConst_INT16S LastByte;
 GuiConst_INT16U Address;

 // Lock GUI resources
 GuiDisplay_Lock ();

 // Walk through all lines
 for (Y = 0; Y < GuiConst_BYTE_LINES; Y++)
 {
 if (GuiLib_DisplayRepaint[Y].ByteEnd >= 0)
 // Something to redraw in this line
 {
 // Set address Pointer
 Address = Y * GuiConst_BYTES_PR_LINE +
 GuiLib_DisplayRepaint[Y].ByteBegin;
 :
 Some display controller specific code
 :

 // Write display data
 :
 Some display controller specific code
 :

 // Reset repaint parameters
 GuiLib_DisplayRepaint[Y].ByteEnd = -1;
 }
 }

 // Free GUI resources
 GuiDisplay_Unlock ();

}

Two parts of the routine are display controller specific, one that sets up the correct
display controller RAM address, and one that writes display data to the display controller
RAM.

Some displays uses more than one display controller, a very widespread example is
128×64 pixels displays using the HD61202 display controller (or similar, a large number
of variants exists). This display controller type can handle 64×64 pixels, and two display
controllers are therefore employed. The GuiDisplay_Refresh() function then looks like:

void GuiDisplay_Refresh(void)
{
 GuiConst_INT16S LineNo;
 GuiConst_INT16S LastByte;
 GuiConst_INT16S N;

 // Lock GUI resources
 GuiDisplay_Lock ();

 // Walk through all lines
 for (LineNo = 0; LineNo < GuiConst_BYTE_LINES; LineNo++)
 {
 if (GuiLib_DisplayRepaint[LineNo].ByteEnd >= 0)

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 127

 // Something to redraw in this line
 {
 if (GuiLib_DisplayRepaint[LineNo].ByteBegin <
 GuiConst_BYTES_PR_SECTION)
 // Something to redraw in first section
 {
 // Select controller
 ControllerSelect(1);

 // Set address Pointer
 :
 Some display controller specific code
 :

 // Write display data
 :
 Some display controller specific code
 :

 // Reset repaint parameters
 if (GuiLib_DisplayRepaint[LineNo].ByteEnd >=
 GuiConst_BYTES_PR_SECTION)
 // Something to redraw in second section
 GuiLib_DisplayRepaint[LineNo].ByteBegin =
 GuiConst_BYTES_PR_SECTION;
 else // Done with this line
 GuiLib_DisplayRepaint[LineNo].ByteEnd = -1;
 }

 if (GuiLib_DisplayRepaint[LineNo].ByteEnd >= 0)
 // Something to redraw in second section
 {
 // Select controller
 ControllerSelect(2);

 // Set address Pointer
 :
 Some display controller specific code
 :

 // Write display data
 :
 Some display controller specific code
 :

 // Reset repaint parameters
 GuiLib_DisplayRepaint[LineNo].ByteEnd = -1;
 }
 }
 }

 // Finished drawing
 ControllerSelect(0);

 // Free GUI resources
 GuiDisplay_Unlock();

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 128

}

The display data writing is divided into two parts, one for each controller, and the
controller is selected by a ControllerSelect(char index) function, which sets some
ports to enable and disable the controllers as required.

Light and contrast control

These topics are beyond easyGUI's control, but it is logical to put the routines for light
and contrast regulation (if applicable) into the GuiDisplay unit.

4 - Compiling the project

Next item is to verify that your project can compile without errors, and preferable,
without warnings.

Make sure to include the GuiLib, GuiDisplay, GuiFont, GuiVar and GuiStruct units into
your project.

Compile and link, and make sure that everything works as intended.

Although we have tested easyGUI on a large number of compilers, and with many
different types of displays, it is impossible to test every possible product and combination
on the market. However, it is our experience that if the compiler confirms to
ANSI X3.159-1989 Standard C, the compiling and linking should proceed without
problems.

In case of problems try setting code optimization to a minimum, and then incrementing
optimization one step at a time. It is especially important to make sure that code
optimization is not applied to the GuiFont, GuiVar and GuiStruct units, because these
units only contain constant declarations which cannot be optimized. Some compilers
misunderstand this, and apply various kinds of optimization to the constant declarations
(with the best intentions!), making them unusable.

C++ is not used in the easyGUI library.

5 - easyGUI interfacing

Interfacing easyGUI to your own target code is a fairly simple exercise. Two important
function calls must be made for easyGUI to work at all:

• GuiLib_Init which initializes easyGUI.

• GuiLib_Refresh which executes easyGUI display writing.

Furthermore, if your operating system uses pre-emptive execution, i.e. it interrupts tasks
at random instances, and transfers control to other tasks, some functions in easyGUI

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 129

must be protected from this, especially display writing. This is accomplished by writing
code for the two protection functions:

• GuiDisplay_Lock which must prevent the OS from switching tasks.

• GuiDisplay_Unlock which opens up normal task execution again.

If your operating system does not use pre-emptive execution, i.e. if you must specifically
release control in one tasks in order for other tasks to be serviced, or if you don't employ
an operating system at all, you can just leave the two protection functions empty. Failing
to write proper code for the protection functions will result in a system with unpredictable
behavior.

GuiLib_Init

This function must be called once, during system start up. Normally this call is done after
low level system initialization, but the sequence of events depends on the nature of your
system. GuiLib_Init performs the following actions:

• Initializes the display by calling GuiDisplay_Init.

• Reset display clipping to full screen.

• Resets display drawing.

• Clears the display.

• Sets various easyGUI variables for normal display writing.

• Selects language zero (reference language defined in easyGUI).

GuiLib_Refresh

The display is updated by the GuiDisplay unit regularly (function GuiDisplay_Refresh),
based on markers that indicate which parts of the display needs updating. However,
many other tasks are performed by easyGUI, when refreshing the system:

• Auto redraw item updating.

• Cursor field updating.

• Scroll box updating.

• Blink box updating.

• Display updating.

You should therefore only call GuiLib_Refresh, not GuiDisplay_Refresh.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 130

GuiLib_ShowScreen

The final basic easyGUI function is GuiLib_ShowScreen, which displays a specific
structure, just like it is displayed in the easyGUI editor. The normal syntax is:

GuiLib_ShowScreen(GuiStruct_???_?,
 GuiLib_NO_CURSOR,
 GuiLib_RESET_AUTO_REDRAW);

The first function argument ID's the structure to show (the ID's are defined in the
GuiStruct.h file). The two other arguments specify that no cursor shall be shown, and
that eventual auto redraw items from previously shown structures should be discarded.
This setup is the most usual. Structures containing cursor fields will use the second
argument to specify which cursor field to initially show, instead of stating
GuiLib_NO_CURSOR. The last argument can be used if several structures are shown in
succession, where auto redraw items from the first structure should be maintained even
after displaying the second structure. This is done by specifying
GuiLib_NO_RESET_AUTO_REDRAW instead of GuiLib_RESET_AUTO_REDRAW.

For further information on the various easyGUI function calls, see the reference section.

TESTING THE SYSTEM

When the display controller specific code has been written, and the target system can be
turned on without emitting smoke, it is time to verify that the display functions as
intended. And it most certainly doesn't at the first try. So, how to test the display setup
in the most efficient way? Do not start with a fine complex easyGUI structure, containing
lots of text and icons, because probably nothing at all will be shown... Instead, use the
following guidelines as an inspiration. They are not universally applicable, because of the
diversity of target systems, but the guidelines are a result of considerable experience in
the field, and could therefore spare your of some of your precious development time.

The guidelines are intended to be used in the order stated:

1 Establishing some kind of connection.

2 Turning on a single pixel.

3 Showing the test pattern.

4 Showing an easyGUI structure.

1 - Establishing some kind of connection

First item on the agenda is to verify that the contrast regulation is working properly. This
of course only applies to LCD displays, but these are by far the most used in industry
today. A common mistake is to save the contrast regulation for later, and concentrate on

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 131

getting something on the display. This could be a big mistake, because a contrast setting
at the lower limit will mask all attempts to write on the display.

The contrast setting should be changed from minimum to maximum, and the display
should correspondingly change from totally blank to rather dark. If not, something is
wrong with the contrast regulating electronics (or controlling code).

When seemingly working ok, set the contrast to a middle value, and proceed.

2 - Turning on a single pixel

Write some code to turn on the top left pixel:

GuiLib_Dot(0, 0, GuiConst_PIXEL_ON);

This should turn on the upper left pixel. If nothing happens, try the opposite:

GuiLib_Dot(0, 0, GuiConst_PIXEL_OFF);

The last statement should normally not produce anything, but sometimes the meaning of
black and white pixels are mixed up, because some display controllers use a zero bit as
black, while others use a one bit (we are talking monochrome displays here).

Next, make sure that the relevant GuiLib functions (GuiLib_Init() and
GuiLib_Refresh()) are actually called at all. A little embarrassing if they are not, and if
this is overlooked before proceeding with the next attempts, because then guaranteed
nothing will show up on the display.

Still no reaction: Time to recheck all settings, both easyGUI settings, and the display
controller specific code written previously.

If this doesn't help either, it is prudent to measure all signals to the display with an
oscilloscope or similar equipment, and make sure that they look satisfactory, regarding
levels, flanks, and timings.

Last resort is to dig into the display controller data sheet, and double check if anything
was overlooked, misunderstood, or misread.

Bitter experience has shown that very carefully rechecking the above issues one by one
normally ends with the proper result, albeit some times not after a certain amount of
frustration... This, however, has nothing to do with easyGUI, but is the normal process
necessary to get things working.

3 - Showing the test pattern

As an extra help and control that things are set up correctly a test pattern can be
generated in easyGUI. Just call the GuiLib_TestPattern function, and the following
pattern should be shown in the top left corner of the display:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 132

The top and left long lines are 32 pixels in length. The short lines nearest the corner are
7 pixels long, while the lines farthest from the corner are 6 pixels long. There is one pixel
of white space between the long and short horizontal lines, while there are 3 pixels
between the long and short vertical lines.

If nothing is shown at all go back to the previous step.

If the pattern does not look like shown above (look very carefully!) there are several
possibilities:

The display uses horizontal display bytes, but they are
reversed, i.e. bit zero is at left and should by at right,
or vice versa. Change the bit orientation layout in
Project parameters, generate C code, compile, and try
again.

The display uses vertical display bytes, but they are
reversed, i.e. bit zero is at top and should by at
bottom, or vice versa. Change the bit orientation
layout in Project parameters, generate C code,
compile, and try again.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 133

The display uses vertical display bytes, but horizontal
bytes have been selected, or vice versa. Change the
byte orientation layout in Project parameters,
generate C code, compile, and try again.

The display uses vertical display bytes, but horizontal
bytes have been selected, or vice versa. Furthermore,
bit zero is at top and should by at bottom, or vice
versa. Change the byte orientation layout in Project
parameters, generate C code, compile, and try again.

Same as previous pattern.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 134

Same as previous pattern.

4 - Showing an easyGUI structure

The first easyGUI structure to show should be simple - preferably just a single text.
Normally this last test step doesn't pose problems. The difficult part is to get the display
communication and addressing correct, and the previous items should have taken care of
this by now.

If problems arise, they are almost always connected with variable type declarations and
pointer sizes, as set up in Project parameters. Most important is to make sure that the
memory model selected for the processor corresponds to the pointer size set in easyGUI.
Errors on this subject almost certainly results in a non-operating system.

Other potential areas of trouble are stack sizes, and memory wrap-around, if the
compiler only supports e.g. 64KB segments. Some linkers don't even warn on memory
wrap-around.

A final source of errors are the two task switching protection functions GuiDisplay_Lock
and GuiDisplay_Unlock. Errors arising from improper code in these functions show up
as periodical problems with garbled display contents.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 135

15 HOW TO UTILIZE easyGUI - A TUTORIAL

A system with the complexity of easyGUI takes some time getting used to. The tutorial in
this chapter walks you through the various aspects of structure editing, from the very
simple to the more complex tasks.

EFFICIENT LEARNING

The tutorial is best read while running easyGUI. To achieve the quickest and most
efficient learning easyGUI should be started, and the project file Tutorial.gui loaded. This
project file is installed as part of the easyGUI system, and is found in the sub folder
Manual under the folder containing easyGUI. If a standard install was performed it is found
under C:\Program files\easyGUI\Manual.

ITEM TYPES

Let's start with reviewing the different types of items. Enter structure editing:

- and select the Item demo [0] structure using the drop down arrow in the top left
combobox:

The structure can now be viewed in the display panel:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 136

Observe that the bitmap with girl and bird is by external reference, and the
corresponding Birdy nam nam.bmp file must be present along with the Tutorial.gui file, but in a
standard installation this should be the case.

This structure is used in the following sections, and is just a collection of various items,
made for demonstration purposes. It demonstrates the following item types:

• Pixel Draw a single pixel.

• Line Draws a line. Three different types of lines are shown -
horizontal, vertical, and angled.

• Framed rectangle Draws a rectangle frame - two are shown, one with a
single pixel in border thickness, and one with two
pixels.

• Filled rectangle Draws a filled box.

• Text Draws a text - several different text fonts are shown.

• Icon Draws items just like texts - several different icons are
shown.

• Formatter A non-visible item that instructs following variables on
how to format them. A formatter is valid until another
formatter is stated, so one formatter can be common to
a series of variables.

• Variable Draws a string or numerical value, using the format set
by the last formatter.

Besides these item types there are four more, which are not shown:

• Paragraph A text box with associated parameters, where text is
automatically divided into lines at word spaces and
hyphen characters.

• Structure call Call another structure, which is then drawn, before
continuing with the current structure. Structures can be
nested inside structures as deep as stack space permits
on the target system.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 137

• Indexed structure call Calls another structure with index number depending
on a variable.

• Clipping rectangle Limit all later drawing commands to a rectangle. This
item can also terminate clipping.

They will be demonstrated at a later state.

VIEWING THE STRUCTURE

To the left of the display are a number of settings, controlling how the display is viewed
in easyGUI. Let's investigate a few of them:

• At the top is a zoom setting enabling enlargement of the display.

• Next is a Show display border setting that determines if the active drawing area
of the display shall be indicated. The active area is all addressable pixels, while
the inactive area is the border around the edges of the display. The size and color
of this border area can be set in the Parameters window. The border area has no
effect on anything drawn by easyGUI, it is shown purely to make the display
representation look more real, and to show if items drawn on the display collides
with the border in an unpleasant way. The Item demo [0] shows the difference
clearly:

Show display border on:

Show display border off:

• Last setting this time is Show undrawn area, which indicates with a special color
the areas of the display not touched by the current structure. This is handy when

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 138

checking where backgrounds are drawn. This setting should in most instances be
left on. Again, the Item demo [0] shows the difference:

Show undrawn area on:

Show undrawn area off:

Observe that the white rectangle in the fourth line is only visible when Show
undrawn area is on, i.e. it is then possible to view where this structure actually
draws something.

The other settings will be explained later, when a relevant situation arises.

Another handy feature is the crosshair, which is shown when the mouse enters the
display area. Besides the crosshair itself the position in pixels is shown. The coordinate
system has (0,0) at the upper left corner.

SPLASH STRUCTURE

We won't go through the details of how the Item demo [0] structure is build, but instead
move on to a more practical example - a splash screen, or welcome screen.

Select the Screen Splash [0] structure:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 139

This structure shows a logo, some texts, and a version number, which is dynamic, i.e. its
value is controlled directly from the embedded code, thereby avoiding the need to edit
the structure each time the version number changes.

Structure details

Because this is the first "real" structure we will dissect it in details. It consists of eight
items:

Screen Splash [0]

1 Filled rectangle Clears the screen

2 Text Actually an icon, showing the easyGUI logo

3 Text "Graphical User Interface Tool"

4 Text "for Embedded Systems"

5 Text "- making graphical user interfaces has never been
easier"

6 Text "Version"

7 Formatter Determines the format for the next item

8 Variable Version number for the application

Clearing the screen

The first item (filled rectangle) is used to clear the screen, so it simply draws a white
block with the same dimensions as the display (240x128 pixels in this case).

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 140

Finding this and that item

Next is the logo, item 2. Click on item 2 in the item list, so its properties are shown in the
rightmost pane.

Oh - what if we can't remember what number the item has? Don't just click on all the
items until you happen to hit the right one, click instead on the display area, hitting the
logo. This item will then be selected. Another handy thing is the other way around - hold
the left mouse button depressed while clicking on one of the items in the item list - the
corresponding item is then indicated by a flashing red rectangle around it.

Drawing a logo

Logos are shown just like normal text, but the font is a little special. We want to place
the logo at a fixed position, so the coordinates are absolute. The logo should always be
placed centrally in the horizontal direction, so to make things a little simpler the
alignment is set to Center,

- and the X coordinate is set to 119 (midpoint).

This way the logo can change size, but will still be placed centrally.

The logo is represented as the A character in the font Icon5, so Icon5 is selected as font,
and A as text. Press the CHARACTER SET button just below the text field to view the icons in
font Icon5. There is only one!

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 141

More than one character can of course be entered in the text field, but for logos it is
almost never practical to enter more than one character.

A centered, relative text

Items 3, 4 and 5 are simple texts. They are placed centered horizontally, just like the
logo, so it would seen natural to use the same technique, i.e. absolute X coordinate 63,
and centered alignment. But here another very useful feature of coordinate technique
can be demonstrated: Relative coordinates. Both X and Y coordinates are selected as
relative for the three text items, with X set to zero (keeping all items centered), and Y
set to various values to ensure a nice separation between texts.

The effect of this is that the icon now determines X and Y coordinates for itself and the
three texts. This can be demonstrated by selecting item 2 (the icon) and experiment with
changing the coordinates. Observe that the four items now move as a united entity.

PS - nice texts

One feature of the texts which is maybe not immediately apparent is its style. The texts
are written in proportional writing, just like the text you are reading right now. That looks
much nicer than text written with fixed spacing. Select item 3 (the "Graphical User
Interface Tool" text), and try changing the Style setting:

- to fixed spacing. The result is rather terrible:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 142

But look closer... Both texts ("Graphical User Interface Tool" and "for Embedded
Systems") changed style, resetting to Proportional will bring both texts back to
something a little more pretty:

The reason for this can be found by inspecting item 4 (the "for Embedded Systems"
text). Look at the Style setting for this item:

It is set to "No change". This is a common feature of many settings in the property panel.
Selecting "No change" means that the settings from the previous item is maintained. And
what is this setting then? That is revealed by the small blue info texts right next to most
of the properties:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 143

Proportional writing is one of the main advantages of using easyGUI - it assures a much
more modern and professional looking user interface than can be achieved with
traditional character based display modes, where all characters are placed at fixed
coordinates (lines and positions):

Big texts - small texts

Our splash example uses two different text fonts: A fat one for the "Graphical User
Interface ... " text, and a small compressed one for the "- making graphical ... ":

Fonts can be mixed freely in each structure, but the memory requirements on the target
system will of course rise if many different fonts are employed.

Don't use too many different fonts, because that will only result in a messy user
interface. It is better to select a specific font for headlines, one for normal text, and so
on.

Another good reason not to use overly many fonts is ROM memory usage - unless your
resources are unlimited...

Showing variables

The version number in the lower left corner:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 144

- could of course just be written in plain text, but then it would have to be edited each
time the source code receives a new version number. Better to just show the version
number from the source code. In the example the version number is a simple 16 bit
constant, set to 123. This number should be shown as "1.23", i.e. major and minor
version number. Many other schemes can of course be employed, but this example
shows a couple of things concerning formatting and display of variables.

Item 7 is a formatter. The only properties for this type of item are:

The properties are set to:

Field width Zero, to indicate variable field width, i.e. the field width is
just sufficient to contain the number in the selected style.

Decimals Two - we want to show the value 123 as "1.23".

Alignment Left adjusting. Don't confuse this alignment with the normal
alignment for texts, boxes, etc, this alignment determines
how the digits/characters are placed in the field width - but
with the field width set to zero (dynamic width) this setting
has no effect.

Format Decimal. Other possibilities are hexadecimal, exponential,
and time (HH:MM).

Always show sign Off. Not relevant here.

Zero padding Off. With the field width set to zero (dynamic width) this
setting has no effect.

All this results in the numerical value 123 being translated to "1.23".

If no formatter preceded the variable it would be formatted with default settings.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 145

CONFIG STRUCTURE

Our next example is the Screen Config [0] structure, which shows a configuration screen
containing three parameters:

The first parameter is a language selection, where the language can be selected between
five languages: English, German, French, Spanish, and Japanese.

The second parameter is optional, and shall only be shown in some instances. It is a
Force Reduction on/off selection (whatever that is).

The third parameter is a display contrast setting, going from 0-50.

The intention is to let the user navigate the three parameters (or two) by using cursor
fields, but more on that later.

Structure details

The Screen Config [0] structure uses nine items:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 146

Screen Config [0]

1 Filled rectangle Clears the screen

2 Text Headline

3 Text Language explanation

4 Indexed structure Language parameter text

5 Indexed structure Force reduction line

6 Text Display contrast explanation

7 Formatter Formatting of display contrast number

8 Variable Display contrast number

Like in the Splash structure the first item (filled rectangle) is used to clear the screen, by
drawing a white block with the same dimensions as the display.

Don't forget the coordinates

The explanatory texts and the parameters in the Screen Config [0] structure are aligned in
two columns, a left-aligned for the explanatory texts, and a right-aligned for the
parameters. It would be simple to just enter all X coordinates as absolute values, and
tweak the hole thing until everything is nicely lined up. Fair enough if you never plan to
alter anything, but real life is seldom that simple, so it would be nice if the leftmost and
rightmost items were linked, so that moving the top item in a column horizontally moved
the other two with it. Then use relative coordinates, what's the problem? Well, the
problem is that we can't maintain two sets of relative coordinates, one for the left
column, and one for the right column, when the items for the two columns are
interspersed.

The solution (of course there is a solution!) is to utilize the coordinate memory system.
There are three coordinate registers for each of the X and Y coordinates, which are
maintained across structures. At any time can a coordinate be saved in a coordinate
register, or retrieved for use:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 147

This is utilized here, by saving the X coordinate for the left column in X coordinate
register 1, and the X coordinate for the right column in X coordinate register 2. The
following items retrieves the X coordinates again. To aid in controlling coordinate register
usage it can be surveyed at a glance by looking at the item list:

The small indicators show when a coordinate value is saved and retrieved.

Using an indexed structure

Items 3 and 4 constitute the language line. Item 3 is a simple explanatory text
("Language:"), while item 4 is more complex. It introduces the concept of indexed
structures, which is without doubt the most important aspect of easyGUI display design.
The task is to display a text based on a language setting. In this example we want to
display the language designations with their native spelling/character set:

English: "English"

German: "Deutsch"

French: "Français"

Spanish: "Español"

Japanese: "7pmtE"

First problem is to let easyGUI display a text based on a variable selection, second
problem is the Japanese Katakana characters. We'll take them one by one.

It should be fairly clear that just showing a text variable is a solution, but a rather
restricted solution, because it forces us to do string manipulations on the target system,
and it is far easier to do things in easyGUI, in the comfort of our PC environment. And
here the concept of indexed structures comes in handy. A variable has been declared,
called DiConfigLanguage. It is a numerical variable (8 bit unsigned, but that is not essential
here), and the values 0-4 determines the language selection, with zero indicating
English. Look at the structure, with item 4 selected:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 148

The two important properties in this discussion are Structure call and Variable. Structure
call is set to LanguageText, and variable is set to DiConfigLanguage. This means that when
easyGUI draws item 4, it first reads the variable value (Zero right now, look at the small
blue text below the variable box), and then calls structure LanguageText with the index
corresponding to the variable value. So the result here is that easyGUI displays structure
LanguageText [0], if it exists (it does!). If the structure does not exist easyGUI merely goes
on to the next item without drawing anything.

And what does LanguageText [0] contain? Easy to see, just press the JUMP TO STRUCTURE button.
Pressing the CHILD STRUCTURE button (at the top of the properties panel) does the same. Now
easyGUI displays the LanguageText [0] structure, which is very simple, just a single text
item. Note that the X and Y coordinates are merely set to relative and (0,0). This means
that the position of the text is solely determined by the calling structure, which sets it to
(176,45). The attentive reader has perhaps now noted that the text is not shown at
(0,0), but rather some distance down and to the right. If it was displayed at (0,0) it
would look like -

- because Y=0 refers to the base line of the text, placing almost all of the text outside
the display area. But instead it is shown as:

Much more readable, but how? Well, easyGUI checks if the first item in a structure has
relative coordinates. If so (as is the case here both for X and Y) it sets the starting
coordinate value to the value defined in the Origo box, located in the top left panel:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 149

The values for this structure are (X,Y)=(20,20), which is a nice value, because it displays
the item properly for view, but doesn't use op more display area than necessary, a bonus
if the text is long. This coordinate value (20,20) is only used by the easyGUI PC program,
it is not used by the target system. If the target system is forced to show a structure
starting with relative coordinates (not a sensible thing to do) it uses (0,0) as the starting
point. The structure is not shown at the (176,45) position specified by the calling
structure (Screen Config [0]), because easyGUI cannot know exactly which structure is
calling LanguageText [0]. It could theoretically be any structure in the system.

That was a little off topic, the main reason for looking at the LanguageText [0] structure was
to inspect what it contains. To make the dynamic language text work another four
structures (LanguageText [1] to LanguageText [4]) has been defined, each similarly containing a
single text. Now, jump back to the calling structure (Screen Config [0]) by pressing the PARENT

STRUCTURE button at the top of the properties panel. We are now back at the calling
structure, still with item 4 selected (easyGUI remembers the selected item individually
for each structure in the system, a big advantage).

Let's try to alter the DiConfigLanguage variable to something else. Press the small ÷ and +
buttons, and watch the variable value change, and more importantly, watch the language
text change. Editing the variable value directly can be accomplished by pressing the EDIT
button, which shows a little editing window. If the value is incremented past four, or
below zero, easyGUI ascertains that no structure exists with e.g. the name
LanguageText [5]:

At the same time no language text is shown:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 150

In this situation it is clearly an error, but in the next section you will see that this feature
can be used to your advantage. Main point is that easyGUI handles the situation
gracefully, no error condition is entered.

Utilizing a disappearing indexed structure

The next line in our example structure is the "Force Reduction" line, which was supposed
to disappear in some instances (perhaps for differently equipped systems?). The
complete line is therefore moved to its own indexed structure, ConfigForceReduction [1].
Remark that the index is set to [1], not [0]. No ConfigForceReduction [0] structure exists, this
is perfectly legal.

The variable controlling the index structure is ForceReductFlag, and it is right now set to the
value one. Try changing it to zero, and watch the indexed structure disappears:

At this point it should be obvious what happens: ConfigForceReduction [0] doesn't exist, so
nothing is shown. On the target system, all that needs to be done is making sure the
ForceReductFlag variable has the correct value, before showing Screen Config [0]. Easy!

As a little bonus the third line, "Display Contrast", moved up on the position of the "Force
Reduction" line. This only happens if the coordinates are carefully set, so that the "Force
Reduction" line can be removed without upsetting the relative Y coordinates. It should be
observed that the Y coordinate is placed inside the ConfigForceReduction [1] structure, not in
the calling item. Otherwise, removing the "Force Reduction" line would leave an empty
space between the two remaining lines, because the calling item is still there, but by now
don't call anything.

The indexed structure technique can be further refined, to show much more complex
screen setups, with many parts of the display being dynamic, depending on the settings
of variables. Not just for hiding parts of the display, but also for e.g. displaying different
types of information in parts of the display. The latter concept will be demonstrated in
our next example structure.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 151

An on/off text

Turn the "Force Reduction" line on again, by setting the ForceReductFlag variable to one:

The parameter text is an on/off text, controlled by another variable called ForceReduction.
Jump into the ConfigForceReduction [1] structure:

- and you will se that it consists of two items:

Item 1 Text "Force Reduction".

Item 2 Indexed structure "On"/"Off" text.

It must be admitted that item 2 is virtually non-visible, this is because it reads the X
coordinate from a coordinate register, which is not set up properly when looking directly
at the structure.

The second item is yet another indexed structure, controlled by the ForceReduction variable,
which can adopt the values zero ("Off") and one ("On"). It calls the structure TxtOnOff [X].
By the way, the "On"/"Off" text is nearly invisible, that's because it uses X register 1 as a
coordinate source, and its value is not set correctly inside this structure.

This construction is an example of an indexed structure within an indexed structure:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 152

Screen Config [0]

1 Filled rectangle

2 Text

3 Text

4 Indexed structure call:

 LanguageText [X]

 1 Text

5 Indexed structure call:

 ConfigForceReduction [1]

 1 Text

 2 Indexed structure call:

 TxtOnOff [X]

 1 Text

6 Text

7 Formatter

8 Variable

Backgrounds are important

There is another interesting thing about the on/off text. It is supposed to change during
editing (sounds reasonable), and that shouldn't involve rewriting the entire config
structure, although that would be a solution, but a very inefficient and perhaps slow one
(depending on CPU resources in the target).

There are two ways to get items redrawn, without redrawing everything:

• Cursor fields

• Auto redraw items

The first approach is used here, but that is explained a little later. The second option will
also be explained in due time. Suffice it to say that the item is redrawn. The interesting
thing here is what happens when we redraw an already present item. Coordinates are no
problem, easyGUI remembers the coordinates already calculated, and draws the item

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 153

again in the same position. The problem can be the background. If no background is
specified (transparent writing) the texts will pile up on each other, so changing Force
Reduction from OFF to ON will change the display from:

- to:

You can't see this in easyGUI, because the display is cleared each time a setting is
changed, or another structure is selected, but on the target the above will happen. Not
pretty. Something have to be done about the background. Changing the background
from Transparent to Pixel Off should solve the problem. Indeed, going from ON back to
OFF displays:

- to:

Very fine! Until you change the parameter to ON again:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 154

My my... What happened now? Invented a new word? No, the "ON" text was displayed
correctly, but the first letter of the "OFF" text is still very much visible. So - another
solution must be found. And this is a concept called a background box. It is situated in
the Text part of the properties panel:

Turning it on for an item will instruct easyGUI to draw a filled box in the background
color with a height determined by the item (Text: Font height, Rectangle: Rectangle
height), and a width set directly as a property (to the right of the Background box
checkbox). In our example structure the background box is enabled for the indexed
structure that calls the ON/OFF texts (ConfigForceReduction [1]). The net result is that a
background of (in this case) 19 pixels width is drawn before the "ON" or "OFF" text is
drawn, sufficiently wide to cover any pre-existing text. As a side product the background
color of an item with background box drawing enabled is automatically set to
transparent, to avoid drawing the background twice.

The fine art of cursor fields

We are not quite finished with the trusted and tried Screen Config [0] structure. It is
supposed to be navigated by using a cursor to point out the desired parameter, but so
far, not a word about cursor fields (except for several promises to do it later), so now is
the time!

We want three cursor fields, one for Language, one for Force Reduction (optional), and
one for Contrast. In the example they are of course already defined. Select Item 4 (the
first indexed structure) in the Screen Config [0] structure. Note the C in the item list,
rightmost column:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 155

It indicates that a cursor field has been defined for this item. The definition is done in the
Misc. part of the property panel (at the bottom):

Along with the checkbox for cursor field activation is an edit box where the cursor field
index number can be selected. Cursor fields are normally indexed from zero and
upwards, but this is not a requirement. Negative field indices however, are not allowed.

In the easyGUI library is a number of routines for handling cursor fields, which can be
called from the embedded code, when the user does something that shall change the
active cursor field (normally a keyboard event of some kind). easyGUI then takes care of
drawing the new active cursor field using inverted colors, and drawing the previous
cursor field in normal appearance. This can be tested in easyGUI by using the Show
cursor field box at the lower left corner:

Try clicking the NEXT button, and see two things:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 156

• A zero appears in the middle box.

• The "English" text is shown in inverted colors.

Pressing NEXT twice more shows the next cursor fields:

 and

Repeated clicks on NEXT just wraps around to the first cursor field. Clicks on PREV will of
course traverse the cursor fields the other way around. Pressing NONE clears cursor field
displaying, while clicking on ALL shows all cursor fields at once. A specific cursor field
index can also be entered directly in the centre box.

Another way to show cursor fields at a glance is to select the Highlight cursor fields
checkbox just above the

Show cursor field box:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 157

Purple indicators are drawn around all cursor fields, and their indices are shown. This is a
quick way to spot if the correct items are marked as cursor fields, and that their
numbering is as desired. easyGUI doesn't check for numbering inconsistencies, like e.g.
gaps in the numbering sequence, or duplicated cursor indices.

It is legal to have gaps in the numbering sequence, and this situation is handled correctly
by easyGUI. An example is the second cursor field in our test structure (Force Reduction
ON/OFF). If the line containing it is not shown (ForceReductFlag = 0) the remaining cursor
fields are 0 and 2:

easyGUI still handles selecting the next and previous cursor field correctly, because it
searches for the next/previous field, instead of just incrementing/decrementing the
cursor index. On the target system the two remaining cursor fields still have the same
indices, making code writing specific to a certain cursor field easy.

Duplicated cursor indices are not very useful, but maybe a situation can be constructed
where it could be advantageous. Anyway, duplicate indices are handled by ignoring all
duplicates except the last one.

MAIN MENU STRUCTURE

The Screen Main [0] structure is included here to show an ordinary menu page with, in this
case, three menu items:

A couple of tricks have been used to enhance the look of the menu items.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 158

Better looking menu items

Look carefully at the "Preparation" menu item. It is assumed that cursor field zero is
selected, i.e. shown inverted, like in the above illustration. The inverted colors stretch
beyond the text itself (this was also the case for the "Language" item in the previous
structure). The purpose here is to make all three menu items look the same when
inverted - best shown by enabling all three of then in easyGUI:

This effect is achieved by defining a background box for all three menu items when the
same width (90 pixels in this example).

Another small feature which enhanced the look is much more difficult to spot. An extra
line of dark pixels has been added to each menu item:

 - not

This has the effect that the "p" in "Preparation" doesn't touch the bottom of the dark box.
It looks just a little better. One extra pixel line can be added to any of the four borders,
by using the Border pixels control at the right side of the Background color panel:

In this example the bottom border has an extra line of pixels added, as indicated by the
black box below the "Border pixels" text. Clicking on any of the four boxes around this
text will toggle its status.

Playing with cursor indices

In the demo database is two main menus:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 159

 and

They are made in the same style, but don't contain exactly the same menu items. The
purpose is to show once more, that cursor fields can be numbered rather freely:

 and

In the left structure is three menu items (cursor fields):

0 Preparation

3 Manual preparation

4 Configuration

- while the right one contains:

1 Single samples preparation

2 Sample holder preparation

3 Manual preparation

4 Configuration

One of the two main menus is shown on the target system, depending on some kind of
selection (a standard and a deluxe version perhaps?):

if (machine_deluxe)
 GuiLib_ShowScreen(GuiStruct_Screen_Main_0,
 GuiLib_NO_CURSOR,
 GuiLib_RESET_AUTO_REDRAW);
else
 GuiLib_ShowScreen(GuiStruct_Screen_Main_1,
 GuiLib_NO_CURSOR,
 GuiLib_RESET_AUTO_REDRAW);

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 160

This code selects between the two structures. So, in this instance the index numbers of
the two structures ([0] and [1]) are used manually, not for an indexed structure call, but
that is of course just as legal.

The two structures combined defined the menu items:

0 Preparation

1 Single samples preparation

2 Sample holder preparation

3 Manual preparation

4 Configuration

Now, because we have used the cursor indices a little intelligent, life has become easier
on the target system, where we now only have to assign some kind of action to the five
cursor indices, disregarding which of the two structures is active.

FLASH STRUCTURE

The Screen Flash [0] structure is an example of how to combine easyGUI structures and
manual graphics. It looks like:

Mixing structures and plain graphics

The intention is to show a progress bar in the white rectangle at the bottom. The
rectangle coordinates are defined using the position tables:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 161

Here a number of fixed positions have been defined, among others the two positions
FlashProgress1 and FlashProgress2. Each of these defines a fixed X and Y coordinate. The first
is used in the structure (look at item 8) for the upper left corner of the rectangle (X1,Y1),
and the second is used for the lower right corner (X2,Y2):

When the structure has been shown on the target system, the positions can be reused in
the code, because they are exported as constants in the GuiVar.h file. The graphical
primitives in the GuiLib unit can then be used for manual drawing, i.e. pixels, lines,
boxes, etc.

The advantage of the above procedure is that the position and size of the box can be
adjusted in easyGUI by tweaking the values in the position tables, without touching
anything on the target system, and it will still work.

LET'S SCROLL

easyGUI supports scrolling information. A necessity if handling lists of data, because the
relatively small displays used in most embedded applications doesn't allow much data to
be visible at once.

The scroll system uses three components to handle scroll boxes:

• Scroll box

• Scroll bar

• Scroll line

Scroll box is the primary object, which defines the size of the scroll box. To it can be
added a scroll bar, which is the vertical box at the side of the scroll box. The scroll bar is
not mandatory, it can be omitted if desired. A scroll line must be placed inside the scroll
box, and it will then by easyGUI be repeated the number of times space in the scroll box

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 162

permits. Because the scroll line is only a single item, and a scroll line in most
circumstances will need a more complex composition (data arranged in columns, units,
etc) it is most usual to use a structure call as the scroll line item. This called structure
can then be made as complex as the situation warrants. Eventually the scroll line
structure can be a set of structures, controlled by one or more variables.

A simple scroll box could look like:

It is the Screen ScrollBoxSimple [0] structure. There are two columns in the scroll box, one
with numbers, and one with text strings.

It can be observed that the (in this case) six scroll lines shown contain exactly the same
data. This is not an error, but will always be the case when looking at the scroll box in
easyGUI. On the target system the various scroll lines will be populated with real data,
and hopefully look different (otherwise, why use a scroll box?...) The reason is that
easyGUI merely repeats the defined scroll line the needed number of times, without
querying after data.

The scroll line is in a separate structure, called ScrollBoxLineSimple [0]. The two structures
consist of the following items:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 163

Screen ScrollBoxSimple [0]

1 Filled rectangle

2 Text

3 Framed rectangle (Scroll
box)

4 Framed rectangle (Scroll
bar)

5 Structure call: (Scroll
line)

 ScrollBoxLineSimple [0]

 1 Formatter

 2 Variable (Number)

 3 Variable (Text string)

The three special markings (scroll box, scroll bar, scroll line) are set in the Misc. box at
the bottom of the properties panel. Item 3 in Screen ScrollBoxSimple [0] is the scroll box:

On the target system easyGUI must be told what to display in each individual scroll line.
This is accomplished by defining a query function, which easyGUI can call each time it
needs to draw a scroll line. The function can be named freely:

static void DemoScrollLine(GuiConst_INT16S LineIndex)
{
 GuiVar_GroupNo = LineIndex + 1;
 strcpy(GuiVar_GroupName, SomeTexts[LineIndex]);
}

- or, in the case of Unicode mode:

static void DemoScrollLine(GuiConst_INT16S LineIndex)
{
 GuiVar_GroupNo = LineIndex + 1;
 GuiLib_UnicodeStrCpy(GuiVar_GroupName, SomeTexts[LineIndex]);
}

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 164

- where it is assumed that the SomeTexts[] array is containing Unicode strings.

What's going on here? The function must have the parameters as shown above. It has a
single 16bit signed parameter defining the scroll line index, with zero as the topmost line
(the topmost absolute line, not the topmost visible line). The function in the example
above first sets the line number in the scroll box as the index number + 1 (item 2 in the
ScrollBoxLineSimple [0] structure), resulting in the scroll box showing 1, 2, 3, ... Next the text
(item 3) is set to something meaningful based on the scroll line index.

Now the scroll box can be set up and shown:

GuiLib_SetScrollPars(&DemoScrollLine, 27, 0);

GuiLib_ShowScreen(GuiStruct_Screen_ScrollBoxSimple_0,
 GuiLib_NO_CURSOR,
 GuiLib_RESET_AUTO_REDRAW);

The first statement connects the easyGUI scroll box functions to our just defined query
function DemoScrollLine. Besides the function address the total number of lines in the
scroll box is stated (27 in this case), and the line being selected initially (zero, the
topmost in this case).

The second statement shows the structure, just as usual. The scroll box is now displayed,
with the topmost line selected (inverted).

Now the only thing missing is scroll box navigation. One line up:

GuiLib_Scroll_Up();

- and one line down:

GuiLib_Scroll_Down();

The two functions returns 1 if scrolling was possible, otherwise 0 if the list was already at
the top or bottom. This return value can be used to e.g. signal when the scroll list ends
have been reached, and to initiate actions based on scroll line changes.

The currently selected scroll line can be checked by reading the variable
GuiLib_ScrollActiveLine. The variable GuiLib_ScrollTopLine tells which line is
currently displayed at the top of the scroll box. Finally, the variable
GuiLib_ScrollVisibleLines can be useful, it tells how many lines are visible in the
scroll box (is calculated when displaying the scroll box structure).

More advanced calculations on scroll box contents can be done by using the
GuiLib_ScrollLineOffsetY() function. It returns the number of pixels vertically
between the currently active scroll line and the topmost visible scroll line.

A special case is a scroll box without a bar, i.e. only a window with scrolling lines in it. It
is enabled by selecting -1 as the initial line number in the GuiLib_SetScrollPars
function call (last parameter). This has two consequences:

• No inverted bar is shown.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 165

• The scroll box contents scrolls immediately when issuing GuiLib_Scroll_Up()
and GuiLib_Scroll_Down() commands (if scrolling is possible), because the bar
no longer needs to transverse to the top or bottom of the scroll box before
scrolling commences.

The GuiLib_ScrollActiveLine variable and the GuiLib_ScrollLineOffsetY() function
has no meaning in this special case.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 166

16 easyGUI FUNCTION REFERENCE

There are six modules in the easyGUI system:

• GuiConst definitions (h file only).

• GuiLib library.

• GuiDisplay display control unit.

• GuiFont easyGUI font definitions.

• GuiVar easyGUI user defined variable definitions.

• GuiStruct easyGUI structure definitions.

Most target system functions are found in the GuiLib unit, the rest are in the
GuiDisplay unit.

The GuiLib unit uses a number of include files:

• GuiGraph1H.c library for 1 bpp monochrome displays with horizontal display
bytes.

• GuiGraph1V.c library for 1 bpp monochrome displays with vertical display bytes.

• GuiGraph2H.c library for 2 bpp grayscale displays with horizontal display bytes.

• GuiGraph2V.c library for 2 bpp grayscale displays with vertical display bytes.

• GuiGraph2H2P.c library for 2 bpp grayscale displays with horizontal display bytes,
and two bit planes.

• GuiGraph2V2P.c library for 2 bpp grayscale displays with vertical display bytes,
and two bit planes.

• GuiGraph4H.c library for 4 bpp grayscale/color displays with horizontal display
bytes.

• GuiGraph4V.c library for 4 bpp grayscale/color displays with vertical display
bytes.

• GuiGraph5.c library for 5 bpp grayscale displays.

• GuiGraph8.c library for 8 bpp grayscale/color displays.

• GuiGraph16.c library for 12/15/16 bpp color displays.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 167

• GuiGraph24.c library for 18/24 bpp color displays.

Monochrome version: Only the GuiGraph1H.c and GuiGraph1V.c include files are
part of the installation.

GUICONST UNIT

This unit is only an h file, containing definitions set up in easyGUI in the Parameters
window. The constants unit should not be edited directly, instead the values are set from
inside easyGUI.

The following constants are defined in easyGUI (in alphabetical order):

Constants

GuiConst_AUTOREDRAW_FIELDS_MAX

Purpose: Max. number of concurrent auto redraw items. A large number will
consume more RAM space on the target system. Each auto redraw
item consumes approximately 60 bytes.

Full declaration: #define GuiConst_AUTOREDRAW_FIELDS_MAX XXX

GuiConst_AUTOREDRAW_MAX_VAR_SIZE

Purpose: Size of biggest Auto redraw variable of all structures.

Full declaration: #define GuiConst_AUTOREDRAW_MAX_VAR_SIZE XXX

GuiConst_AUTOREDRAW_ON_CHANGE

Purpose: Auto redraw items are updated only if the controlling variable has
changed, or if the item does not have a controlling variable. If this
directive is not present Auto redraw items will be continuously
updated, each time the GuiLib_Refresh function is called.

Full declaration: #define GuiConst_AUTOREDRAW_ON_CHANGE

GuiConst_AVR_COMPILER_FLASH_RAM

Purpose: Special flag for AVR compilers when using flash RAM.

Full declaration: #define GuiConst_AVR_COMPILER_FLASH_RAM

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 168

GuiConst_AVRGCC_COMPILER

Purpose: Special flag for AVR GCC compilers. Replaces the keyword const with
the keyword PROGMEM in all easyGUI generated c/h files.

Full declaration: #define GuiConst_AVRGCC_COMPILER

GuiConst_BIT_BOTTOMRIGHT

Purpose: Defines that display bytes are oriented with bit zero at right
(horizontal display bytes) or bottom (vertical display bytes).

Full declaration: #define GuiConst_BIT_BOTTOMRIGHT

GuiConst_BIT_TOPLEFT

Purpose: Defines that display bytes are oriented with bit zero at left (horizontal
display bytes) or top (vertical display bytes).

Full declaration: #define GuiConst_BIT_TOPLEFT

GuiConst_BITMAP_SUPPORT_ON

Purpose: Bitmap module enabled.

Full declaration: #define GuiConst_BITMAP_SUPPORT_ON

GuiConst_BLINK_FIELDS_MAX

Purpose: Defines highest blink field number currently in use.

Full declaration: #define GuiConst_BLINK_FIELDS_MAX

GuiConst_BLINK_SUPPORT_ON

Purpose: Blink module enabled.

Full declaration: #define GuiConst_BLINK_SUPPORT_ON

GuiConst_BYTE_HORIZONTAL

Purpose: Defines that display bytes in the display controller are arranged in a
horizontal manner.

Full declaration: #define GuiConst_BYTE_HORIZONTAL

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 169

GuiConst_BYTE_LINES

Purpose: No. of byte lines in the display (vertical or horizontal).

Full declaration: #define GuiConst_BYTE_LINES XXX

GuiConst_BYTE_VERTICAL

Purpose: Defines that display bytes in the display controller are arranged in a
vertical manner.

Full declaration: #define GuiConst_BYTE_VERTICAL

GuiConst_BYTES_PR_LINE

Purpose: Bytes per display line (horizontal or vertical).

Full declaration: #define GuiConst_BYTES_PR_LINE XXX

GuiConst_BYTES_PR_SECTION

Purpose: Bytes per display line for each display controller. Only used if more
than one display controller is used.

Full declaration: #define GuiConst_BYTES_PR_SECTION XXX

GuiConst_CHAR

Purpose: Character definition (8 bit unsigned). Default char.

Full declaration: #define GuiConst_CHAR XXX

GuiConst_CHARMODE_ANSI

Purpose: Character coding is ANSI, using 8 bit character size.

Full declaration: #define GuiConst_CHARMODE_ANSI

GuiConst_CHARMODE_UNICODE

Purpose: Character coding is Unicode, using 16 bit character size.

Full declaration: #define GuiConst_CHARMODE_UNICODE

GuiConst_CLIPPING_SUPPORT_ON

Purpose: Clipping module enabled.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 170

Full declaration: #define GuiConst_CLIPPING_SUPPORT_ON

GuiConst_CODEVISION_COMPILER

Purpose: Special flag for CodeVision compilers. Inserts flash keywords where
appropriate in easyGUI code.

Full declaration: #define GuiConst_CODEVISION_COMPILER

GuiConst_COLOR_BYTE_SIZE

Purpose: Size of color variables. Can be from 1 to 3 bytes in size.

Full declaration: #define GuiConst_COLOR_BYTE_SIZE XXX

GuiConst_COLOR_DEPTH_1

Purpose: Indicates a 1 bpp (monochrome) color depth.

Full declaration: #define GuiConst_COLOR_DEPTH_1

GuiConst_COLOR_DEPTH_2

Purpose: Indicates a 2 bpp (grayscale) color depth.

Full declaration: #define GuiConst_COLOR_DEPTH_2

GuiConst_COLOR_DEPTH_4

Purpose: Indicates a 4 bpp (grayscale or color) color depth.

Full declaration: #define GuiConst_COLOR_DEPTH_4

GuiConst_COLOR_DEPTH_5

Purpose: Indicates a 5 bpp (grayscale) color depth.

Full declaration: #define GuiConst_COLOR_DEPTH_5

GuiConst_COLOR_DEPTH_8

Purpose: Indicates a 8 bpp (grayscale or color) color depth.

Full declaration: #define GuiConst_COLOR_DEPTH_8

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 171

GuiConst_COLOR_DEPTH_12

Purpose: Indicates a 12 bpp color depth.

Full declaration: #define GuiConst_COLOR_DEPTH_12

GuiConst_COLOR_DEPTH_15

Purpose: Indicates a 15 bpp color depth.

Full declaration: #define GuiConst_COLOR_DEPTH_15

GuiConst_COLOR_DEPTH_16

Purpose: Indicates a 16 bpp color depth.

Full declaration: #define GuiConst_COLOR_DEPTH_16

GuiConst_COLOR_DEPTH_18

Purpose: Indicates a 18 bpp color depth.

Full declaration: #define GuiConst_COLOR_DEPTH_18

GuiConst_COLOR_DEPTH_24

Purpose: Indicates a 24 bpp (truecolor) color depth.

Full declaration: #define GuiConst_COLOR_DEPTH_24

GuiConst_COLOR_MAX

Purpose: Defines the highest allowed color index (0~16777216).

Full declaration: #define GuiConst_COLOR_MAX XXX

GuiConst_COLOR_MODE_GRAY

Purpose: Specifies grayscale color mode. Only applicable to 1 bpp, 2 bpp, 4
bpp, and 8 bpp color depths.

Full declaration: #define GuiConst_COLOR_MODE_GRAY

GuiConst_COLOR_MODE_PALETTE

Purpose: Specifies palette based color mode. Only applicable to 4 bpp and 8
bpp color depths.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 172

Full declaration: #define GuiConst_COLOR_MODE_PALETTE

GuiConst_COLOR_MODE_RGB

Purpose: Specifies RGB color mode. Only applicable to 8 bpp or higher color
depths.

Full declaration: #define GuiConst_COLOR_MODE_RGB

GuiConst_COLOR_PLANES_1

Purpose: Indicates a normal single bit plane color system.

Full declaration: #define GuiConst_COLOR_PLANES_1

GuiConst_COLOR_PLANES_2

Purpose: Indicates a two bit plane color system, with a monochrome image in
each plane, which combined gives a 2 bpp (grayscale) system.

Full declaration: #define GuiConst_COLOR_PLANES_2

GuiConst_COLOR_RGB_STANDARD

Purpose: Indicates that the system uses 24 bit color codes, (directly or via
palette), with color bits organized as bits 0~7 red, bits 8~15 green,
and bits 16~23 blue. Such a system is directly compatible with the
internally used color system in the easyGUI library, and thus do not
need conversion of color codes.

Full declaration: #define GuiConst_COLOR_RBG_STANDARD

GuiConst_COLOR_SIZE

Purpose: Color depth in bits per pixel (1~24).

Full declaration: #define GuiConst_COLOR_SIZE XXX

GuiConst_COLORCODING_B_MASK

Purpose: Bit mask for blue bits in color value. Indicated in hexadecimal value.

Full declaration: #define GuiConst_COLORCODING_B_MASK XXX

GuiConst_COLORCODING_B_MAX

Purpose: Defines the highest allowed blue color index (1~255).

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 173

Full declaration: #define GuiConst_COLORCODING_B_MAX XXX

GuiConst_COLORCODING_B_SIZE

Purpose: No. of bits with blue color information in palette/RGB entries.

Full declaration: #define GuiConst_COLORCODING_B_SIZE XXX

GuiConst_COLORCODING_B_START

Purpose: First bit with blue color information in palette/RGB entries.

Full declaration: #define GuiConst_COLORCODING_B_START XXX

GuiConst_COLORCODING_G_MASK

Purpose: Bit mask for green bits in color value. Indicated in hexadecimal value.

Full declaration: #define GuiConst_COLORCODING_G_MASK XXX

GuiConst_COLORCODING_G_MAX

Purpose: Defines the highest allowed green color index (1~255).

Full declaration: #define GuiConst_COLORCODING_G_MAX XXX

GuiConst_COLORCODING_G_SIZE

Purpose: No. of bits with green color information in palette/RGB entries.

Full declaration: #define GuiConst_COLORCODING_G_SIZE XXX

GuiConst_COLORCODING_G_START

Purpose: First bit with green color information in palette/RGB entries.

Full declaration: #define GuiConst_COLORCODING_G_START XXX

GuiConst_COLORCODING_R_MASK

Purpose: Bit mask for red bits in color value. Indicated in hexadecimal value.

Full declaration: #define GuiConst_COLORCODING_R_MASK XXX

GuiConst_COLORCODING_R_MAX

Purpose: Defines the highest allowed red color index (1~255).

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 174

Full declaration: #define GuiConst_COLORCODING_R_MAX XXX

GuiConst_COLORCODING_R_SIZE

Purpose: No. of bits with red color information in palette/RGB entries.

Full declaration: #define GuiConst_COLORCODING_R_SIZE XXX

GuiConst_COLORCODING_R_START

Purpose: First bit with red color information in palette/RGB entries.

Full declaration: #define GuiConst_COLORCODING_R_START XXX

GuiConst_CONTROLLER_COUNT_HORZ

Purpose: Indicates number of display controllers used horizontally, usually 1.

Full declaration: #define GuiConst_CONTROLLER_COUNT_HORZ XXX

GuiConst_CONTROLLER_COUNT_VERT

Purpose: Indicates number of display controllers used vertically, usually 1.

Full declaration: #define GuiConst_CONTROLLER_COUNT_VERT XXX

GuiConst_CURSOR_FIELDS_MAX

Purpose: Max. number of cursor fields, automatically calculated by easyGUI.

Full declaration: #define GuiConst_CURSOR_FIELDS_MAX XXX

GuiConst_CURSOR_MODE_STOP_TOP

Purpose: Indicates that cursor movement stops at the top/bottom cursor fields,
i.e. no wrap around to the other end.

Full declaration: #define GuiConst_CURSOR_MODE_TOP_STOP

GuiConst_CURSOR_MODE_WRAP_AROUND

Purpose: Indicates that cursor movement wraps around at the top/bottom
cursor fields, going from top cursor field to bottom cursor field, and
vice versa.

Full declaration: #define GuiConst_CURSOR_MODE_WRAP_AROUND

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 175

GuiConst_CURSOR_SUPPORT_ON

Purpose: Cursor module enabled.

Full declaration: #define GuiConst_CURSOR_SUPPORT_ON

GuiConst_DECIMAL_COMMA

Purpose: The decimal character for floating point variables is a comma
(12,34).

Full declaration: #define GuiConst_DECIMAL_COMMA

GuiConst_DECIMAL_PERIOD

Purpose: The decimal character for floating point variables is a period (12.34).

Full declaration: #define GuiConst_DECIMAL_PERIOD

GuiConst_DISPLAY_ACTIVE_AREA

Purpose: Indicates that a general active area has been defined globally for the
display.

Full declaration: #define GuiConst_DISPLAY_ACTIVE_AREA

GuiConst_DISPLAY_ACTIVE_AREA_CLIPPING

Purpose: Indicates that clipping is enabled for the general active area.

Full declaration: #define GuiConst_DISPLAY_ACTIVE_AREA_CLIPPING

GuiConst_DISPLAY_ACTIVE_AREA_COO_REL

Purpose: Indicates that the coordinate system origo is moved from the usual
upper left corner of the display to the upper left corner of the general
active area.

Full declaration: #define GuiConst_DISPLAY_ACTIVE_AREA_COO_REL

GuiConst_DISPLAY_ACTIVE_AREA_X1

Purpose: X1 coordinate of the general active area.

Full declaration: #define GuiConst_DISPLAY_ACTIVE_AREA_X1 XXX

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 176

GuiConst_DISPLAY_ACTIVE_AREA_Y1

Purpose: Y1 coordinate of the general active area.

Full declaration: #define GuiConst_DISPLAY_ACTIVE_AREA_Y1 XXX

GuiConst_DISPLAY_ACTIVE_AREA_X2

Purpose: X2 coordinate of the general active area.

Full declaration: #define GuiConst_DISPLAY_ACTIVE_AREA_X2 XXX

GuiConst_DISPLAY_ACTIVE_AREA_Y2

Purpose: Y2 coordinate of the general active area.

Full declaration: #define GuiConst_DISPLAY_ACTIVE_AREA_Y2 XXX

GuiConst_DISPLAY_BYTES

Purpose: No. of bytes for a full display image.

Full declaration: #define GuiConst_DISPLAY_BYTES XXX

GuiConst_DISPLAY_HEIGHT

Purpose: Virtual height of display in pixels. This is the height seen by easyGUI
when handling the display. Differs from the physical display height
only if the display is rotated 90°.

Full declaration: #define GuiConst_DISPLAY_HEIGHT XXX

GuiConst_DISPLAY_HEIGHT_HW

Purpose: Physical height of display in pixels. This is the height used by the
display driver in GuiDisplay.c. Differs from the virtual display height
only if the display is rotated 90°.

Full declaration: #define GuiConst_DISPLAY_HEIGHT_HW XXX

GuiConst_DISPLAY_WIDTH

Purpose: Virtual width of display in pixels. This is the width seen by easyGUI
when handling the display. Differs from the physical display width
only if the display is rotated 90°.

Full declaration: #define GuiConst_DISPLAY_WIDTH XXX

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 177

GuiConst_DISPLAY_WIDTH_HW

Purpose: Physical width of display in pixels. This is the width used by the
display driver in GuiDisplay.c. Differs from the virtual display width
only if the display is rotated 90°.

Full declaration: #define GuiConst_DISPLAY_WIDTH_HW XXX

GuiConst_FLOAT_SUPPORT_ON

Purpose: Float support module enabled.

Full declaration: #define GuiConst_FLOAT_SUPPORT_ON

GuiConst_FONT_UNCOMPRESSED

Purpose: Indicates that all font data are uncompressed.

Full declaration: #define GuiConst_FONT_UNCOMPRESSED

GuiConst_ICC_COMPILER

Purpose: Special flag for Imagecraft compilers.

Full declaration: #define GuiConst_ICC_COMPILER

GuiConst_INT8S

Purpose: 8 bit signed definition. Default signed char.

Full declaration: #define GuiConst_INT8S XXX

GuiConst_INT8U

Purpose: 8 bit unsigned definition. Default unsigned char.

Full declaration: #define GuiConst_INT8U XXX

GuiConst_INT16S

Purpose: 16 bit signed definition. Default signed short.

Full declaration: #define GuiConst_INT16S XXX

GuiConst_INT16U

Purpose: 16 bit unsigned definition. Default unsigned short.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 178

Full declaration: #define GuiConst_INT16U XXX

GuiConst_INT24S

Purpose: 24 bit signed definition. Normally only used on systems with 24 bit
addressing. Default undefined.

Full declaration: #define GuiConst_INT24S XXX

GuiConst_INT24U

Purpose: 24 bit unsigned definition. Normally only used on systems with 24 bit
addressing. Default undefined.

Full declaration: #define GuiConst_INT24U XXX

GuiConst_INT32S

Purpose: 32 bit signed definition. Default signed long.

Full declaration: #define GuiConst_INT32S XXX

GuiConst_INT32U

Purpose: 32 bit unsigned definition. Default unsigned long.

Full declaration: #define GuiConst_INT32U XXX

GuiConst_INTCOLOR

Purpose: Specifies the type of color variables. Can be from 8 to 32 bits in size.

Full declaration: #define GuiConst_INTCOLOR GuiConst_INTXXXU

GuiConst_ITEM_TEXTBLOCK_INUSE

Purpose: One or more Paragraph items in use. If no Paragraph items are
present this directive will not be present either, and some library
code related to paragraph text drawing is spared from compiling.

Full declaration: #define GuiConst_ITEM_TEXTBLOCK_INUSE

GuiConst_ITEM_TOUCHAREA_INUSE

Purpose: One or more touch areas in use. If no touch areas are present this
directive will not be present either, and some library code related to
touch areas handling is spared from compiling.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 179

Full declaration: #define GuiConst_ITEM_TOUCHAREA_INUSE

GuiConst_KEIL_COMPILER_REENTRANT

Purpose: Special flag for Keil 8051 compilers when using recursive functions.
Adds the keyword reentrant to all recursively called functions in the
easyGUI library. If this setting is not used easyGUI will typically
display graphics primitives and simple screen structures correctly, but
fail to display complex screen structures.

Full declaration: #define GuiConst_KEIL_COMPILER_REENTRANT

GuiConst_LANGUAGE_CNT

Purpose: Count of defined languages.

Full declaration: #define GuiConst_LANGUAGE_CNT XXX

GuiConst_LANGUAGE_XXX

Purpose: Defines a specific language. The XXX is the language name, taken
from Language setup in easyGUI. The keyword is followed by the
language index.

Full declaration: #define GuiConst_LANGUAGE_XXX XXX

GuiConst_MAX_TEXT_LEN

Purpose: Max. length of single text string, when displaying structures. Can be
up to 255 characters. Smaller values will conserve RAM space on the
target system.

Full declaration: #define GuiConst_MAX_TEXT_LEN XXX

GuiConst_MAX_VARNUM_TEXT_LEN

Purpose: Max. length of numerical variable text representations, when
displaying structures. Can be up to 255 characters. Smaller values
will conserve RAM space on the target system.

Full declaration: #define GuiConst_MAX_VARNUM_TEXT_LEN XXX

GuiConst_MIRRORED_HORIZONTALLY

Purpose: Indicates that the display output is mirrored horizontally.

Full declaration: #define GuiConst_MIRRORED_HORIZONTALLY

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 180

GuiConst_MIRRORED_VERTICALLY

Purpose: Indicates that the display output is mirrored vertically.

Full declaration: #define GuiConst_MIRRORED_VERTICALLY

GuiConst_PALETTE_SIZE

Purpose: No. of entries in the palette. Can be 16 or 256.

Full declaration: #define GuiConst_PALETTE_SIZE XXX

GuiConst_PICC_COMPILER_ROM

Purpose: Special flag for Microchip PicC compilers when handling ROM.

Full declaration: #define GuiConst_PICC_COMPILER_ROM

GuiConst_PIXEL_OFF

Purpose: Color of Pixel OFF pixels.

Full declaration: #define GuiConst_PIXEL_OFF XXX

GuiConst_PIXEL_ON

Purpose: Color of Pixel ON pixels.

Full declaration: #define GuiConst_PIXEL_ON XXX

GuiConst_PTR

Purpose: Pointer size definition. Will be equal to GuiConst_INT16U,
GuiConst_INT24U, GuiConst_INT32U, void *, or void *const.

Full declaration: #define GuiConst_PTR XXX

GuiConst_REL_COORD_ORIGO_INUSE

Purpose: Indicates that either a globally defined active area, or at least one
Active area item, is using relative coordinate system.

Full declaration: #define GuiConst_REL_COORD_ORIGO_INUSE

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 181

GuiConst_REVERSED_BYTE_PAIRS

Purpose: Swaps bytes for 16 bit display RAM values. Only applicable to 4 bpp
color depth with horizontal byte orientation, and 8 bpp color depth.

Full declaration: #define GuiConst_REVERSED_BYTE_PAIRS

GuiConst_ROTATED90DEGREE

Purpose: Defines that the display is used in a 90° rotated mode (either left or
right).

Full declaration: #define GuiConst_ROTATED90DEGREE

GuiConst_ROTATED90DEGREE_LEFT

Purpose: Defines that the display is used in a 90° rotated left mode.

Full declaration: #define GuiConst_ROTATED90DEGREE_LEFT

GuiConst_ROTATED90DEGREE_RIGHT

Purpose: Defines that the display is used in a 90° rotated right mode.

Full declaration: #define GuiConst_ROTATED90DEGREE_RIGHT

GuiConst_ROTATED_OFF

Purpose: Defines that the display is used in a normal 0° rotation mode.

Full declaration: #define GuiConst_ROTATED_OFF

GuiConst_ROTATED_UPSIDEDOWN

Purpose: Defines that the display is used in a 180° rotated upside-down mode.

Full declaration: #define GuiConst_ROTATED_UPSIDEDOWN

GuiConst_SCROLL_MODE_STOP_TOP

Purpose: Indicates that scroll box navigation stops at the top/bottom scroll
line, i.e. no wrap around to the other end of the scroll list.

Full declaration: #define GuiConst_SCROLL_MODE_TOP_STOP

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 182

GuiConst_SCROLL_MODE_WRAP_AROUND

Purpose: Indicates that scroll box navigation wraps around at the top/bottom
scroll line, going from top line to the bottom line, and vice versa.

Full declaration: #define GuiConst_SCROLL_MODE_WRAP_AROUND

GuiConst_SCROLL_SUPPORT_ON

Purpose: Scroll module enabled.

Full declaration: #define GuiConst_SCROLL_SUPPORT_ON

GuiConst_TEXT

Purpose: Character definition. Will be equal to GuiConst_CHAR or
GuiConst_INT16U, depending on the use of ANSI or Unicode
character coding.

Full declaration: #define GuiConst_TEXT XXX

GuiConst_TOUCHAREA_MAX

Purpose: Defines highest touch area ID number currently in use.

Full declaration: #define GuiConst_TOUCHAREA_MAX

GUILIB UNIT

This unit contains the core library for handling the easyGUI system. The unit should
never by edited, as this will make updating to newer versions of the easyGUI library
difficult. The unit must have the same version number as the easyGUI Windows
application in use.

The GuiLib unit includes one of the graphics primitives files GuiGraph1H.c,
GuiGraph1V.c, GuiGraph2H.c, GuiGraph2V.c, GuiGraph2H2P.c, GuiGraph2V2P.c,
GuiGraph4H.c, GuiGraph4V.c, GuiGraph5.c, GuiGraph8.c, GuiGraph16.c, or
GuiGraph24.c, depending on the selected display controller setup.

These graphical primitives files should not be included in the compiler/linker setup
of the target system.

The following constants, variables and functions are available (in alphabetical order):

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 183

Constants

Constants only relevant internally between the easyGUI units are not mentioned.

GuiLib_CHR_SET

Purpose: No. of character sets in use in the fonts. Only relevant in ANSI
character mode.

Full declaration: #define GuiLib_CHR_SET 2

GuiLib_NO_CURSOR

Purpose: Used in GuiLib_ShowScreen function call. No cursor should be
displayed.

Full declaration: #define GuiLib_NO_CURSOR -1

GuiLib_NO_RESET_AUTO_REDRAW

Purpose: Used in GuiLib_ShowScreen function call. Auto redraw items from
previously shown structures shall be maintained.

Full declaration: #define GuiLib_NO_RESET_AUTO_REDRAW 0

GuiLib_RESET_AUTO_REDRAW

Purpose: Used in GuiLib_ShowScreen function call. Auto redraw items from
previously shown structures shall be erased.

Full declaration: #define GuiLib_RESET_AUTO_REDRAW 1

Variables

Variables only relevant internally between the easyGUI units are not mentioned.

GuiLib_ActiveCursorFieldNo

Purpose: Contains the currently active cursor field number, with zero being the
first cursor field. Do not change it directly, but call functions
GuiLib_Cursor_Select, GuiLib_Cursor_Up, or GuiLib_Cursor_Down
instead.

Full declaration: GuiConst_INT16S GuiLib_ActiveCursorFieldNo;

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 184

GuiLib_CurStructureNdx

Purpose: Contains the index number to the currently displayed structure. Is
initially set to -1. After a call to the GuiLib_Clear function it is reset
to -1.

Full declaration: GuiConst_INT16S GuiLib_CurStructureNdx;

GuiLib_LanguageCharSet

Purpose: Contains the currently selected language character set. Character set
zero is the default character set containing the standard ANSI
characters, as used in Windows. Only relevant in ANSI character
mode.

Full declaration: GuiConst_INT16S GuiLib_LanguageCharSet;

GuiLib_LanguageIndex

Purpose: Contains the currently selected language index, with index zero being
the reference language. To change the language use the
GuiLib_SetLanguage function.

Full declaration: GuiConst_INT16S GuiLib_LanguageIndex;

GuiLib_ScrollActiveLine

Purpose: Contains the currently active scroll line, with zero being the topmost
scroll line. Do not change it directly, but call functions
GuiLib_Scroll_Up, or GuiLib_Scroll_Down instead.

Full declaration: GuiConst_INT16S GuiLib_ScrollActiveLine;

GuiLib_ScrollTopLine

Purpose: Contains the currently topmost visible line in a scroll box.

Full declaration: GuiConst_INT16S GuiLib_ScrollTopLine;

GuiLib_ScrollVisibleLines

Purpose: Contains the number of visible lines in a scroll box. The number is the
theoretical number of visible lines in the box, not the current count of
lines with some kind of contents.

Full declaration: GuiConst_INT16S GuiLib_ScrollVisibleLines;

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 185

Functions

GuiLib_BlinkBoxMarkedItem

Purpose: Sets parameters for blinking item.

Remarks: Removed if blink support is disabled.

Full declaration: void GuiLib_BlinkBoxMarkedItem(
 GuiConst_INT16U BlinkFieldNo,
 GuiConst_INT16U CharNo,
 GuiConst_INT16S Rate);

Input: Blink item index number.

 Character number. If character zero is selected the entire text will
blink. If character one or higher is selected only that single character
will blink.

 Blinking rate, in multiples of GuiLib_Refresh refresh rate, valid
range 0-255.

Output: None.

Related functions: GuiLib_BlinkBoxStop

GuiLib_BlinkBoxStart

Purpose: Sets parameters for blinking box function.

Remarks: Removed if blink support is disabled.

Full declaration: void GuiLib_BlinkBoxStart(
 GuiConst_INT16S X1,
 GuiConst_INT16S Y1,
 GuiConst_INT16S X2,
 GuiConst_INT16S Y2,
 GuiConst_INT16S Rate);

Input: Rectangle coordinates.

 Blinking rate, in multiples of GuiLib_Refresh refresh rate, valid
range 0-255.

Output: None.

Related functions: GuiLib_BlinkBoxStop

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 186

GuiLib_BlinkBoxStop

Purpose: Stops blinking, both if started by a GuiLib_BlinkBoxStart call or a
GuiLib_BlinkBoxMarkedItem call.

Remarks: Removed if blink support is disabled.

Full declaration: void GuiLib_BlinkBoxStop(void);

Input: None.

Output: None.

Related functions: GuiLib_BlinkBoxStart

GuiLib_BorderBox

Purpose: Draws a filled rectangle with single pixel border.

Full declaration: void GuiLib_BorderBox(
 GuiConst_INT16S X1,
 GuiConst_INT16S Y1,
 GuiConst_INT16S X2,
 GuiConst_INT16S Y2,
 GuiConst_INTCOLOR BorderColor,
 GuiConst_INTCOLOR FillColor);

Input: Coordinates.

 Fill and border colors.

Output: None.

Related functions: GuiLib_Box
GuiLib_FillBox

GuiLib_Box

Purpose: Draws a single pixel wide rectangle.

Full declaration: void GuiLib_Box(
 GuiConst_INT16S X1,
 GuiConst_INT16S Y1,
 GuiConst_INT16S X2,
 GuiConst_INT16S Y2,
 GuiConst_INTCOLOR Color);

Input: Coordinates.

 Color.

Output: None.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 187

Related functions: GuiLib_BorderBox
GuiLib_FillBox

GuiLib_Clear

Purpose: Clears the screen. Clears flags for cursors, auto redraw items, and
scrolling.

Full declaration: void GuiLib_Clear(void);

Input: None.

Output: None.

Related functions: GuiLib_ClearDisplay

GuiLib_ClearDisplay

Purpose: Clears the screen.

Full declaration: void GuiLib_ClearDisplay(void);

Input: None.

Output: None.

Related functions: GuiLib_Clear

GuiLib_Cursor_Down

Purpose: Makes next cursor field active, redrawing both current and new cursor
field.

Remarks: Removed if cursor support is disabled.

Full declaration: GuiConst_INT8U GuiLib_Cursor_Down(void);

Input: None.

Output: 0: Cursor at end of range.

 1: Cursor moved.

Related functions: GuiLib_Cursor_End
GuiLib_Cursor_Home
GuiLib_Cursor_Select
GuiLib_Cursor_Up

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 188

GuiLib_Cursor_End

Purpose: Makes last cursor field active, redrawing both current and new cursor
field.

Remarks: Removed if cursor support is disabled.

Full declaration: GuiConst_INT8U GuiLib_Cursor_End(void);

Input: None.

Output: 0: Cursor at end of range.

 1: Cursor moved.

Related functions: GuiLib_Cursor_Down
GuiLib_Cursor_Home
GuiLib_Cursor_Select
GuiLib_Cursor_Up

GuiLib_Cursor_Home

Purpose: Makes first cursor field active, redrawing both current and new cursor
field.

Remarks: Removed if cursor support is disabled.

Full declaration: GuiConst_INT8U GuiLib_Cursor_Home(void);

Input: None.

Output: 0: Cursor at end of range.

 1: Cursor moved.

Related functions: GuiLib_Cursor_Down
GuiLib_Cursor_End
GuiLib_Cursor_Select
GuiLib_Cursor_Up

GuiLib_Cursor_Select

Purpose: Makes requested cursor field active, redrawing both current and new
cursor field.

Remarks: Removed if cursor support is disabled.

Full declaration: void GuiLib_Cursor_Select(
 GuiConst_INT16S NewCursorFieldNo);

Input: New cursor field No.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 189

Output: None.

Related functions: GuiLib_Cursor_Down
GuiLib_Cursor_End
GuiLib_Cursor_Home
GuiLib_Cursor_Up

GuiLib_Cursor_Up

Purpose: Makes previous cursor field active, redrawing both current and new
cursor field.

Remarks: Removed if cursor support is disabled.

Full declaration: GuiConst_INT8U GuiLib_Cursor_Up(void);

Input: None.

Output: 0: Cursor at end of range.

 1: Cursor moved.

Related functions: GuiLib_Cursor_Down
GuiLib_Cursor_End
GuiLib_Cursor_Home
GuiLib_Cursor_Select

GuiLib_Dot

Purpose: Draws a single pixel.

Full declaration: void GuiLib_Dot(
 GuiConst_INT16S X,
 GuiConst_INT16S Y,
 GuiConst_INTCOLOR Color);

Input: Coordinates.

 Color.

Output: None.

GuiLib_DrawChar

Purpose: Draws a single character on the display.

Full declaration: void GuiLib_DrawChar(
 GuiConst_INT16S X,
 GuiConst_INT16S Y,
 GuiConst_INT16S FontNo,
 GuiConst_CHAR Character,
 GuiConst_INTCOLOR Color);

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 190

Input: Coordinates.

 Font index.

 Character.

 Color.

Output: None.

Related functions: GuiLib_DrawStr

GuiLib_DrawStr

Purpose: Draws a formatted string on the display.

Full declaration: ANSI character mode:

 void GuiLib_DrawStr(
 GuiConst_INT16S X,
 GuiConst_INT16S Y,
 GuiConst_INT16U FontNo,
 GuiConst_INT8S CharSetSelector,
 GuiConst_TEXT *String,
 GuiConst_INT8U Alignment,
 GuiConst_INT8U PsWriting,
 GuiConst_INT8U Transparent,
 GuiConst_INT8U Underlining,
 GuiConst_INT16S BackBoxSizeX,
 GuiConst_INT16S BackBoxSizeY1,
 GuiConst_INT16S BackBoxSizeY2,
 GuiConst_INT8U BackBorderPixels,
 GuiConst_INTCOLOR ForeColor,
 GuiConst_INTCOLOR BackColor);

 Unicode character mode:

 void GuiLib_DrawStr(
 GuiConst_INT16S X,
 GuiConst_INT16S Y,
 GuiConst_INT16U FontNo,
 GuiConst_TEXT *String,
 GuiConst_INT8U Alignment,
 GuiConst_INT8U PsWriting,
 GuiConst_INT8U Transparent,
 GuiConst_INT8U Underlining,
 GuiConst_INT16S BackBoxSizeX,
 GuiConst_INT16S BackBoxSizeY1,
 GuiConst_INT16S BackBoxSizeY2,
 GuiConst_INT8U BackBorderPixels,
 GuiConst_INTCOLOR ForeColor,
 GuiConst_INTCOLOR BackColor);

Input: Coordinates.

 Font index.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 191

 Character set selection. -1 selects the default character set, 0 selects
the standard ANSI character set, >0 selects special national character
sets. Only used in ANSI character mode.

 String. A zero terminated text string.

 Alignment. Can be:

• GuiLib_ALIGN_LEFT starts text writing from the X
coordinate.

• GuiLib_ALIGN_CENTER centers text writing around the X
coordinate.

• GuiLib_ALIGN_RIGHT positions the text so that it ends on
the X coordinate.

 Proportional writing. Can be:

• GuiLib_PS_OFF turns off proportional writing.

• GuiLib_PS_ON turns on proportional writing.

• GuiLib_PS_NUM uses numerical proportional writing.

 Transparent. Can be:

• GuiLib_TRANSPARENT_OFF turns transparent writing off, i.e.
the background is painted.

• GuiLib_TRANSPARENT_ON turns transparent writing on, i.e.
only the text is painted.

 Underlining. Can be:

• GuiLib_UNDERLINE_OFF.

• GuiLib_UNDERLINE_ON.

 Background box size X. Determines the width of a background box.
Zero means no background box.

 Background box size Y1. Determines the height of a background box,
measured from the font baseline and up. Zero means same height as
font height above the baseline.

 Background box size Y2. Determines the height of a background box,
measured from the font baseline and down. Zero means same height
as font height below the baseline.

 Border pixels for background box. One extra pixel can be added to
the background box on each of its edges:

• GuiLib_BBP_NONE. No extra pixels.

• GuiLib_BBP_LEFT. One extra pixel on the left edge.

• GuiLib_BBP_RIGHT. One extra pixel on the right edge.

• GuiLib_BBP_TOP. One extra pixel on the top edge.

• GuiLib_BBP_BOTTOM. One extra pixel on the bottom edge.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 192

 The last four settings can be combined, like e.g.
GuiLib_BBP_TOP + GuiLib_BBP_BOTTOM.

 Foreground color. Determines the text color.

 Background color. Determines the background color (if used, either
for normal background (=non transparent) or background box).

Output: None.

Related functions: GuiLib_DrawChar

GuiLib_FillBox

Purpose: Draws a filled rectangle.

Full declaration: void GuiLib_FillBox(
 GuiConst_INT16S X1,
 GuiConst_INT16S Y1,
 GuiConst_INT16S X2,
 GuiConst_INT16S Y2,
 GuiConst_INTCOLOR Color);

Input: Coordinates.

 Color.

Output: None.

Related functions: GuiLib_BorderBox
GuiLib_Box

GuiLib_GetDot

Purpose: Returns the color of a single pixel.

Full declaration: char *GuiLib_GetDot(
 GuiConst_INT16S X,
 GuiConst_INT16S Y);

Input: Coodinates.

Output: Color.

GuiLib_GetTextLanguagePtr

Purpose: Returns pointer to text in structure. Language of selected text can be
freely selected, no matter what language is active.

Full declaration: char *GuiLib_GetTextLanguagePtr(
 GuiConst_INT16U Structure,
 GuiConst_INT16U TextNo,
 GuiConst_INT16S LanguageIndex);

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 193

Input: Structure ID.

 Text No. - 0 is first text in structure, Items other than texts are
ignored.

 Language index.

Output: Pointer to text based on structure, text No. and current language.
Returns Nil if no text was found.

Related functions: GuiLib_GetTextPtr
GuiLib_GetTextWidth

GuiLib_GetTextPtr

Purpose: Returns pointer to text in structure.

Full declaration: char *GuiLib_GetTextPtr(
 GuiConst_INT16U Structure,
 GuiConst_INT16U TextNo);

Input: Structure ID.

 Text No. - 0 is first text in structure, Items other than texts are
ignored.

Output: Pointer to text based on structure, text No. and current language.
Returns Nil if no text was found.

Related functions: GuiLib_GetTextLanguagePtr
GuiLib_GetTextWidth

GuiLib_GetTextWidth

Purpose: Returns width of text in pixels.

Full declaration: GuiConst_INT16U GuiLib_GetTextWidth(
 char *String,
 GuiLib_FontRecConstPtr Font,
 GuiConst_INT8U PsWriting);

Input: Pointer to text string.

 Pointer to easyGUI font.

Output: Width of text in pixels, returns zero if an error is encountered.

Related functions: GuiLib_GetTextLanguagePtr
GuiLib_GetTextPtr

GuiLib_GrayScaleToRgbColor

Purpose: Translates from 0~255 gray scale value to RGB color.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 194

Full declaration: GuiConst_INT32U GuiLib_GrayScaleToRgbColor(
 GuiConst_INT8U GrayValue);

Input: Gray scale value, 0~255.

Output: RGB color value (32 bit, 24 bits used, low byte = Red, middle byte =
Green, high byte = Blue).

Related functions: GuiLib_RgbColorToGrayScale

GuiLib_HLine

Purpose: Draws a horizontal line.

Full declaration: void GuiLib_HLine(
 GuiConst_INT16S X1,
 GuiConst_INT16S X2,
 GuiConst_INT16S Y,
 GuiConst_INTCOLOR Color);

Input: Coordinates.

 Color.

Output: None.

Related functions: GuiLib_Line
GuiLib_VLine

GuiLib_Init

Purpose: Initializes the easyGUI modules. Shall only be called once at
application startup.

Full declaration: void GuiLib_Init(void);

Input: None.

Output: None.

GuiLib_InvertBox

Purpose: Inverts a block.

Full declaration: void GuiLib_InvertBox(
 GuiConst_INT16S X1,
 GuiConst_INT16S Y1,
 GuiConst_INT16S X2,
 GuiConst_INT16S Y2);

Input: Coordinates.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 195

Output: None.

GuiLib_InvertBoxStart

Purpose: Sets parameters for inverted box function.

Full declaration: void GuiLib_InvertBoxStart(
 GuiConst_INT16S X1,
 GuiConst_INT16S Y1,
 GuiConst_INT16S X2,
 GuiConst_INT16S Y2);

Input: Rectangle coordinates.

Output: None.

Related functions: GuiLib_InvertBoxStop

GuiLib_InvertBoxStop

Purpose: Stops inverted box function.

Full declaration: void GuiLib_InvertBoxStop(void);

Input: None.

Output: None.

Related functions: GuiLib_InvertBoxStart

GuiLib_Line

Purpose: Draws a line. Lines with any slant are handled.

Full declaration: void GuiLib_Line(
 GuiConst_INT16S X1,
 GuiConst_INT16S Y1,
 GuiConst_INT16S X2,
 GuiConst_INT16S Y2,
 GuiConst_INTCOLOR Color);

Input: Coordinates.

 Color.

Output: None.

Related functions: GuiLib_HLine
GuiLib_VLine

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 196

GuiLib_MarkDisplayBoxRepaint

Purpose: Sets the repainting scan line markers, indicating that all pixels inside
the specified rectangle must be repainted. The display bytes covering
this rectangle will be sent to the display controller next time the
display is refreshed.

Full declaration: void GuiLib_MarkDisplayBoxRepaint(
 GuiConst_INT16S X1,
 GuiConst_INT16S Y1,
 GuiConst_INT16S X2,
 GuiConst_INT16S Y2);

Input: Rectangle coordinates.

Output: None.

Related functions: GuiLib_ResetDisplayRepaint

GuiLib_PixelToRgbColor

Purpose: Translates from pixel value for display controller color setup to RGB
color.

Full declaration: GuiConst_INT32U GuiLib_PixelToRgbColor(
 GuiConst_INTCOLOR PixelColor);

Input: Encoded pixel color value.

Output: RGB color value (32 bit, 24 bits used, low byte = Red, middle byte =
Green, high byte = Blue).

Related functions: GuiLib_RgbToPixelColor

GuiLib_RedrawScrollList

Purpose: Redraws scroll list items

Remarks: Removed if scroll support is disabled.

Full declaration: void GuiLib_RedrawScrollList(void);

Input: None.

Output: None.

Related functions: GuiLib_SetScrollPars
GuiLib_ScrollLineOffsetY
GuiLib_Scroll_Down
GuiLib_Scroll_Up
GuiLib_Scroll_Home

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 197

GuiLib_Scroll_End
GuiLib_Scroll_To_Line

GuiLib_Refresh

Purpose: Refreshes variables and updates display.

Full declaration: void GuiLib_Refresh(void);

Input: None.

Output: None.

GuiLib_ResetClipping

Purpose: Resets clipping. Drawing can be limited to a rectangular portion of the
screen, this routine resets the clipping limits to the entire screen.

Remarks: Removed if clipping support is disabled.

Full declaration: void GuiLib_ResetClipping(void);

Input: None.

Output: None.

Related functions: GuiLib_SetClipping

GuiLib_ResetDisplayRepaint

Purpose: Resets the repainting scan line markers, so that no part of the image
is marked. Therefore, next time the display is refreshed nothing is
send to the display controller.

Full declaration: void GuiLib_ResetDisplayRepaint(void);

Input: None.

Output: None.

Related functions: GuiLib_MarkDisplayBoxRepaint

GuiLib_RgbColorToGrayScale

Purpose: Translates from RGB color to 0~255 gray scale value.

Full declaration: GuiConst_INT8U GuiLib_RgbColorToGrayScale(
 GuiConst_INT32U RgbColor);

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 198

Input: RGB color value (32 bit, 24 bits used, low byte = Red, middle byte =
Green, high byte = Blue).

Output: Gray scale value, 0~255.

Related functions: GuiLib_GrayScaleToRgbColor

GuiLib_RgbToPixelColor

Purpose: Translates from RGB color to proper pixel value for display controller
color setup.

Full declaration: GuiConst_INTCOLOR GuiLib_RgbToPixelColor(
 GuiConst_INT32U RgbColor);

Input: RGB color value (32 bit, 24 bits used, low byte = Red, middle byte =
Green, high byte = Blue).

Output: Encoded pixel color value.

Related functions: GuiLib_PixelToRgbColor

GuiLib_Scroll_Down

Purpose: Makes next scroll line active, and scrolls list if needed.

Remarks: Removed if scroll support is disabled.

Full declaration: GuiConst_INT8U GuiLib_Scroll_Down(void);

Input: None.

Output: 0: No change, list already at bottom.

 1: Active scroll line changed.

Related functions: GuiLib_SetScrollPars
GuiLib_RedrawScrollList
GuiLib_ScrollLineOffsetY
GuiLib_Scroll_Up
GuiLib_Scroll_Home
GuiLib_Scroll_End
GuiLib_Scroll_To_Line

GuiLib_Scroll_End

Purpose: Makes last scroll line active, and scrolls list if needed.

Remarks: Removed if scroll support is disabled.

Full declaration: GuiConst_INT8U GuiLib_Scroll_End(void);

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 199

Input: None.

Output: 0: No change, list already at bottom.

 1: Active scroll line changed.

Related functions: GuiLib_SetScrollPars
GuiLib_RedrawScrollList
GuiLib_ScrollLineOffsetY
GuiLib_Scroll_Down
GuiLib_Scroll_Up
GuiLib_Scroll_Home
GuiLib_Scroll_To_Line

GuiLib_Scroll_Home

Purpose: Makes first scroll line active, and scrolls list if needed.

Remarks: Removed if scroll support is disabled.

Full declaration: GuiConst_INT8U GuiLib_Scroll_Home(void);

Input: None.

Output: 0: No change, list already at top.

 1: Active scroll line changed.

Related functions: GuiLib_SetScrollPars
GuiLib_RedrawScrollList
GuiLib_ScrollLineOffsetY
GuiLib_Scroll_Down
GuiLib_Scroll_Up
GuiLib_Scroll_End
GuiLib_Scroll_To_Line

GuiLib_Scroll_To_Line

Purpose: Makes specified scroll line active, and scrolls list if needed.

Remarks: Removed if scroll support is disabled.

Full declaration: GuiConst_INT8U GuiLib_Scroll_To_Line(
 GuiConst_INT16S NewLine);

Input: Scroll line, zero is first line.

Output: 0: No change, list already at specified line.

 1: Active scroll line changed.

Related functions: GuiLib_SetScrollPars
GuiLib_RedrawScrollList

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 200

GuiLib_ScrollLineOffsetY
GuiLib_Scroll_Down
GuiLib_Scroll_Up
GuiLib_Scroll_Home
GuiLib_Scroll_End

GuiLib_Scroll_Up

Purpose: Makes previous scroll line active, and scrolls list if needed.

Remarks: Removed if scroll support is disabled.

Full declaration: GuiConst_INT8U GuiLib_Scroll_Up(void);

Input: None.

Output: 0: No change, list already at top.

 1: Active scroll line changed.

Related functions: GuiLib_SetScrollPars
GuiLib_RedrawScrollList
GuiLib_ScrollLineOffsetY
GuiLib_Scroll_Down
GuiLib_Scroll_Home
GuiLib_Scroll_End
GuiLib_Scroll_To_Line

GuiLib_ScrollLineOffsetY

Purpose: Returns Y coordinate offset for active scroll line, zero if active line is
at top of visible scroll area.

Remarks: Removed if scroll support is disabled.

Full declaration: GuiConst_INT16S GuiLib_ScrollLineOffsetY(void);

Input: None.

Output: Y coordinate offset in pixels.

Related functions: GuiLib_SetScrollPars
GuiLib_RedrawScrollList
GuiLib_Scroll_Down
GuiLib_Scroll_Up
GuiLib_Scroll_Home
GuiLib_Scroll_End
GuiLib_Scroll_To_Line

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 201

GuiLib_SetClipping

Purpose: Sets clipping. Drawing can be limited to a rectangular portion of the
screen, this routine sets the clipping limits expressed as two corner
coordinates. Eventual drawing falling outside the clipping rectangle is
ignored. Default for the clipping rectangle is the entire screen.

Remarks: Removed if clipping support is disabled.

Full declaration: void GuiLib_SetClipping(
 GuiConst_INT16S X1,
 GuiConst_INT16S Y1,
 GuiConst_INT16S X2,
 GuiConst_INT16S Y2);

Input: Rectangle coordinates.

Output: None.

Related functions: GuiLib_ResetClipping

GuiLib_SetLanguage

Purpose: Selects current language. Index zero is the reference language.

Full declaration: void GuiLib_SetLanguage(GuiConst_INT16S NewLanguage);

Input: Language index.

Output: None.

GuiLib_SetScrollPars

Purpose: Sets parameters for scroll box functions. Should be called
immediately before GuiLib_ShowScreen function call for the structure
containing the scroll box.

Remarks: Removed if scroll support is disabled.

Full declaration: void GuiLib_SetScrollPars(
 void (*DataFuncPtr) (GuiConst_INT16S LineIndex),
 GuiConst_INT16S NoOfLines,
 GuiConst_INT16S ActiveLine);

Input: DataFuncPtr: Address of function of type
 void F(GEdit_INT16S LineIndex)

 NoOfLines: Total No. of lines in scroll box.

 ActiveLine: Active scroll line (will be shown inverted), -1 means no
bar, just a scrolling window.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 202

Output: None.

Related functions: GuiLib_RedrawScrollList
GuiLib_ScrollLineOffsetY
GuiLib_Scroll_Down
GuiLib_Scroll_Up
GuiLib_Scroll_Home
GuiLib_Scroll_End
GuiLib_Scroll_To_Line

GuiLib_ShowBitmap

Purpose: Displays a stored bitmap.

Remarks: Removed if bitmap support is disabled.

Full declaration: void GuiLib_ShowBitmap(
 GuiConst_INT8U BitmapIndex,
 GuiConst_INT16S X,
 GuiConst_INT16S Y);

Input: Bitmap index in GuiStruct_BitmapPtrList.

 Coordinates for upper left corner

Output: None.

Related functions: GuiLib_ShowBitmapAt

GuiLib_ShowBitmapAt

Purpose: Displays a bitmap at a specific address.

Remarks: Removed if bitmap support is disabled.

Full declaration: void GuiLib_ShowBitmapAt(
 GuiConst_INT8U * BitmapPtr,
 GuiConst_INT16S X,
 GuiConst_INT16S Y);

Input: Pointer to memory area.

 Coordinates for upper left corner

Output: None.

Related functions: GuiLib_ShowBitmap

GuiLib_ShowScreen

Purpose: Instructs structure drawing task to draw a complete structure.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 203

Full declaration: void GuiLib_ShowScreen(
 GuiConst_INT16U Structure,
 GuiConst_INT16S CursorFieldToShow,
 GuiConst_INT8U ResetAutoRedraw);

Input: Structure ID.

 Active cursor field No. - enter GuiLib_NO_CURSOR if there is no cursor
to show.

 Maintain or erase old auto redraw items - use
GuiLib_NO_RESET_AUTO_REDRAW or GuiLib_RESET_AUTO_REDRAW.

Output: None.

GuiLib_StrAnsiToUnicode

Purpose: Converts ANSI string to Unicode string.

Remarks: Only accessible in Unicode character mode. Unicode string must have
sufficient space for converted string.

Full declaration: void GuiLib_StrAnsiToUnicode(
 GuiConst_TEXT *S2,
 GuiConst_CHAR *S1);

Input: ANSI and Unicode string references.

Output: None.

Related functions: GuiLib_UnicodeStrCmp
GuiLib_UnicodeStrCpy
GuiLib_UnicodeStrLen

GuiLib_TestPattern

Purpose: Shows the test pattern used for initial development of the display
controller driver. See the chapter on how to set up the system.

Full declaration: void GuiLib_TestPattern(void);

Input: None.

Output: None.

GuiLib_TouchAdjustReset

Purpose: Resets touch coordinate conversion.

Full declaration: void GuiLib_TouchAdjustReset(void);

Input: None.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 204

Output: None.

GuiLib_TouchAdjustSet

Purpose: Sets one coordinate pair for touch coordinate conversion. Must be
called two times, once for each of two diagonally opposed corners, or
four times, once for each of the corners. The corner positions should
be as close as possible to the physical display corners, as precision is
lowered when going towards the display center.

Full declaration: void GuiLib_TouchAdjustSet(
 GuiConst_INT16S XTrue,
 GuiConst_INT16S YTrue,
 GuiConst_INT16S XMeasured,
 GuiConst_INT16S YMeasured);

Input: XTrue,YTrue: Position represented in display coordinates.

 XMeasured, YMeasured: Position represented in touch interface
coordinates.

Output: None.

GuiLib_TouchCheck

Purpose: Returns touch area No. corresponding to the supplied coordinates. If
no touch area is found at coordinates -1 is returned. Touch
coordinates are converted to display coordinates, if conversion
parameters have been set with the GuiLib_TouchAdjustSet function.

Full declaration: void GuiLib_TouchCheck(
 GuiConst_INT16S X,
 GuiConst_INT16S Y);

Input: Touch position in touch interface coordinates.

Output: -1: No touch area found.

 >=0: Touch area No.

GuiLib_UnicodeStrCmp

Purpose: Compares two Unicode strings.

Remarks: Only accessible in Unicode character mode.

Full declaration: GuiConst_INT16S GuiLib_UnicodeStrCmp(
 GuiConst_TEXT *S1,
 GuiConst_TEXT *S2);

Input: Unicode string references

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 205

Output: <0: S1 is less than S2

 =0: S1 and S2 are equal

 >0: S1 is greater than S2

Related functions: GuiLib_StrAnsiToUnicode
GuiLib_UnicodeStrCpy
GuiLib_UnicodeStrLen

GuiLib_UnicodeStrCpy

Purpose: Copy from one Unicode string to another.

Remarks: Only accessible in Unicode character mode.

Full declaration: void GuiLib_UnicodeStrCpy(
 GuiConst_TEXT *S2,
 GuiConst_TEXT *S1);

Input: S1: Unicode source string reference

 S2: Unicode destination string reference

 Unicode destination string must have sufficient space

Output: None.

Related functions: GuiLib_StrAnsiToUnicode
GuiLib_UnicodeStrCmp
GuiLib_UnicodeStrLen

GuiLib_UnicodeStrLen

Purpose: Calculates length of Unicode string.

Remarks: Only accessible in Unicode character mode.

Full declaration: GuiConst_INT16U GuiLib_UnicodeStrLen(
 GuiConst_TEXT *S);

Input: Unicode string reference.

Output: Length in characters, excluding zero termination.

Related functions: GuiLib_StrAnsiToUnicode
GuiLib_UnicodeStrCmp
GuiLib_UnicodeStrCpy

GuiLib_VLine

Purpose: Draws a vertical line.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 206

Full declaration: void GuiLib_VLine(
 GuiConst_INT16S X,
 GuiConst_INT16S Y1,
 GuiConst_INT16S Y2,
 GuiConst_INTCOLOR Color);

Input: Coordinates.

 Color.

Output: None.

Related functions: GuiLib_Line
GuiLib_HLine

GUIDISPLAY UNIT

This unit must be edited to suit the target system display controller, as described
previously.

The following functions are available (in alphabetical order):

Functions

GuiDisplay_Init

Purpose: Initializes the display. Should never be called directly, because
GuiLib_Init calls it as part of the easyGUI initialization process.
However, GuiLib_Init must be called at some time during system
startup.

Full declaration: void GuiDisplay_Init(void);

Input: None.

Output: None.

Related functions: GuiDisplay_Refresh

GuiDisplay_Lock

Purpose: Prevents the operating system from making task shifts. The contents
of this function must be created by the user, because it is OS
dependent.

Full declaration: void GuiDisplay_Lock(void);

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 207

Input: None.

Output: None.

Related functions: GuiDisplay_Unlock

GuiDisplay_Refresh

Purpose: Refreshes display controller RAM, based on the internal easyGUI
display buffer and refresh flags. Should never be called directly,
because GuiLib_Refresh calls it as part of the easyGUI refresh
process.

Full declaration: void GuiDisplay_Refresh(void);

Input: None.

Output: None.

Related functions: GuiDisplay_Init

GuiDisplay_Unlock

Purpose: Allows normal operating system task shifting again. The contents of
this function must be created by the user, because it is OS
dependent.

Full declaration: void GuiDisplay_Unlock(void);

Input: None.

Output: None.

Related functions: GuiDisplay_Lock

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 208

17 easyTRANSLATE

easyTRANSLATE is a utility to aid in translating easyGUI structure texts. The utility is not
strictly needed, because the complete translation job can be done inside easyGUI, in the
Language window. However, if external translation is desired, easyTRANSLATE comes
handy, because it:

• Hides the complexity of the easyGUI development environment from the
Translator, which possibly is a non-technical person.

• Prevents the Translator from changing anything else than the texts of a single
language.

• Avoids license key problems when using another PC, possibly at a remote
location, for the translation work.

It can be purchased separately from the easyGUI web page.

INSTALLATION

Run the easyTRANSLATE installation program, following the instructions on screen.

Several special fonts are required:

• Arial. Should be present in a standard Windows installation.

• Arial Narrow. Is part of e.g. Microsoft Office.

• Arial Unicode MS.

The installation program installs these fonts, if needed. The fonts can also be found in the
Fonts sub folder of the easyTRANSLATE install folder.

The easyTRANSLATE utility shows a warning message if one or more fonts are missing.

PRINCIPLES

easyTRANSLATE functions by reading a special data file (*.egt) produced by easyGUI,
containing all fonts, structures, variables, etc., in short, a complete copy of your project,
with the master language texts, and the working language texts to be translated.

But why the complete project, why not just the texts? This is to enable easyTRANSLATE
to show not only the texts, but also the complete structures containing these texts, just

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 209

http://www.easygui.com/

like in the Language window in easyGUI. This is a huge advantage when translating, as it
enables the Translator to see the context of the texts, not just the bare texts. The
Translator can thus make correct translations of pieces of text, and judge if the
translated texts take up too much space. Remember that texts in easyGUI are
proportionally spaced (unless otherwise instructed), and it is therefore not possible to set
specific maximum number of characters for the texts to ensure that they keep inside the
allotted limits. This method of visual feedback to the Translator has been proven in
practice to produce translations with a very low number of errors. The only condition that
must be met is that the Translator must initially learn to use this visual way of
translating.

When the Translator has finished the work the data file is returned to the developer, and
read back into easyGUI.

The Translator can only edit the working language texts, not the master language texts
or anything else.

HOW TO USE

The procedure for using easyTRANSLATE is as follows (it is assumed that easyGUI and
easyTRANSLATE has been correctly installed):

1 Make sure that all texts in the Structure window are marked/unmarked correctly
for translation. The "Highlight translation" option in the lower left corner of the
Structure window comes handy for this task.

2 In easyGUI, go to the Language window.

3 Select the master language in the left text column (usually the first language).

4 Select the language to be translated (called the working language) in the right
text column.

5 Copy all non-translated texts from the master language to the working language,
by pressing the COPY TEXTS FROM LEFT TO RIGHT COLUMN button, and selecting the "Only copy to
empty texts" option:

This ensures that all texts to be translated are initially filled with a copy of the
master language text, in many instances making it easier for the Translator to
edit the text, because some texts will usually be quite alike in different languages.

6 Create a *.egt data file for easyTRANSLATE by pressing the EXPORT TO FILE button,
and selecting a suitable destination filename and folder. The filename is as default
the language name.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 210

7 Send the *.egt file to the Translator. The data file is compressed, so that it is
easier to e.g. mail.

8 Do NOT make major edits to the structures while the texts are exported to the
Translator. It is not an error to edit while text are "out of town", but it can
obviously lead to some problems when importing texts back in.

9 The Translator uses easyTRANSLATE to edit texts. Texts are automatically saved
when closing easyTRANSLATE.

10 The *.egt file is returned from the Translator.

11 Read back the *.egt file into easyGUI by pressing the IMPORT FROM FILE button.
easyGUI automatically selects the correct language before importing starts. Texts
that were changed externally in easyTRANSLATE are marked with a little red E to
the left, until the imported data is saved.

12 Select the translated language as the current language.

13 Check all structures in the Structure window for correct appearance. Things to
look for are texts that take up too much space, texts that overflow eventual
background boxes, misunderstandings by the Translator, texts that was not
marked for translation, or shouldn't have been marked for translation, etc.

14 Create C files for the target system, and check for correct function.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 211

18 easyGUI PC SIMULATION TOOLSET

The easyGUI PC simulation toolset is a special display driver that allows your target
system code to run on a PC under the Windows environment. It can be purchased
separately from the easyGUI web page.

PURPOSE

There are several interesting uses for the PC simulator:

• Demonstration software. Can show the intentions of the user interface for e.g.
sales staff, or potential customers, with the added bonus that the screen
presentation can be made to look like the target system, or part of it.

• Experimental parts of the user interface. It is generally much easier and faster to
develop purely on the PC, than to download code into the target system, in order
to test user interface specific items.

• Development of the user interface before the actual target system hardware
becomes available.

Demonstrating the user interface as a Windows application developed with the PC
simulator is far superior compared to using the easyGUI structure editor. This is
especially true if the persons receiving the demonstration are not technically skilled.

NECESSARY FILES

In order for the PC simulator to work the following items is necessary:

• A PC based compiler. The simulator is delivered in three different versions,
suitable for:

� Borland C++ Builder 5 (or higher) C compiler for Windows.

� Microsoft Visual Studio 2003 (or higher) C compiler for Windows.

� DEV C++ 4.9.9.2 (or higher) GNU compiler for Windows. This product is
free, if used under the license rules of the GNU General Public License.
Please look at www.bloodshed.com for further information.

The final executable will look almost 100% the same, no matter which compiler is
used. If other compiler must be used some work must be anticipated on the visual
components.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 212

http://www.easygui.com/
www.bloodshed.com

• The easyGUI PC simulation toolset. For the Borland C++ Builder version the
important files are:

� Main.cpp and Main.h. The main Windows application source. As
delivered Main.cpp does nothing more than contain a simple
visualization of the target system display, and show a simple call to the
GuiLib library.

� GuiLib.cpp and GuiLib.h library. Observe that the GuiLib.c library file
has been renamed to GuiLib.cpp, in order to be recognized by Borland
C++ Builder. The content of the file is the same.

� GuiDisplay.cpp and GuiDisplay.h display control unit. These files are
radically different from the normal GuiDisplay.c and GuiDisplay.h
display control files of the easyGUI library. This is the Windows display
driver, which is the core of the PC simulation toolset. It uses the data
from the GuiLib library in exactly the same way as the normal target
system, i.e. GuiLib doesn't "know" that it is working in a Windows
environment.

� GuiGraph1H.c and GuiGraph1V.c include libraries. These files are
identical to the target system library files.

� Color and Unicode所有语言 versions: GuiGraph2H.c,
GuiGraph2V.c, GuiGraph2H2P.c, GuiGraph2V2P.c, GuiGraph4H.c,
GuiGraph4V.c, GuiGraph5.c, GuiGraph8.c, GuiGraph16.c and
GuiGraph24.c include libraries. These files are identical to the target
system library files.

For the Microsoft Visual Studio version the important files are:

� WinSimulator.cpp. The main Windows application source. As delivered
WinSimulator.cpp does nothing more than contain a simple visualization
of the target system display, and show a simple call to the GuiLib
library.

� GuiLib.c and GuiLib.h library. These files are identical to the target
system library files.

� GuiDisplay.c and GuiDisplay.h display control unit. These files are
radically different from the normal GuiDisplay.c and GuiDisplay.h
display control files of the easyGUI library. This is the Windows display
driver, which is the core of the PC simulation toolset. It uses the data
from the GuiLib library in exactly the same way as the normal target
system, i.e. GuiLib doesn't "know" that it is working in a Windows
environment.

� GuiGraph1H.c and GuiGraph1V.c include libraries. These files are
identical to the target system library files.

� Color and Unicode所有语言 versions: GuiGraph2H.c,
GuiGraph2V.c, GuiGraph2H2P.c, GuiGraph2V2P.c, GuiGraph4H.c,
GuiGraph4V.c, GuiGraph5.c, GuiGraph8.c, GuiGraph16.c and
GuiGraph24.c include libraries. These files are identical to the target
system library files.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 213

For the DEV C++ version the important files are:

� GNUSimulator.cpp. The main Windows application source. As delivered
GNUSimulator.cpp does nothing more than contain a simple visualization
of the target system display, and show a simple call to the GuiLib
library.

� GuiLib.c and GuiLib.h library. These files are identical to the target
system library files.

� GuiDisplay.c and GuiDisplay.h display control unit. These files are
radically different from the normal GuiDisplay.c and GuiDisplay.h
display control files of the easyGUI library. This is the Windows display
driver, which is the core of the PC simulation toolset. It uses the data
from the GuiLib library in exactly the same way as the normal target
system, i.e. GuiLib doesn't "know" that it is working in a Windows
environment.

� GuiGraph1H.c and GuiGraph1V.c include libraries. These files are
identical to the target system library files.

� Color and Unicode所有语言 versions: GuiGraph2H.c,
GuiGraph2V.c, GuiGraph2H2P.c, GuiGraph2V2P.c, GuiGraph4H.c,
GuiGraph4V.c, GuiGraph5.c, GuiGraph8.c, GuiGraph16.c and
GuiGraph24.c include libraries. These files are identical to the target
system library files.

• And finally, of course the normal GuiConst, GuiFont, GuiStruct, and GuiVar files
generated by easyGUI.

COMPILATION

Because the PC environment is a 32 bit system easyGUI must be set accordingly, when
generating C code. To make things easier easyGUI can remember the target system
settings, and still generate C code for the PC simulator, by using the special PC simulator
setting in the C code generation window:

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 214

This setting overrides some of the compiler setup settings, in order to easily produce
code suited for PC usage. To make sure C code generating is not left in this setting when
intending to generate C code for the target system a small warning () is shown.

LIMITATIONS

Simple target system applications can usually be run on the PC environment without
major changes. However, hardware specific operations are of course not possible on the
PC. If the goal is to run the complete target system on the PC for demonstration and/or
simulation purposes it will therefore be necessary to mask out, or simulate, the action of
hardware in the normal target system. This is most conveniently accomplished by the
use of compiler directives. A well designed target system application, with simulation of
hardware specific routines, can be a great asset when debugging and testing the target
system.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 215

19 easyGUI VERSIONS

Below is a listing of changes and version numbers for the easyGUI PC system.

v4.03
Released March 9th 2004

• First commercial easyGUI version. Previous versions were customer specified.

v4.09
Released June 1st 2004

• Parameters: Changing pointer size didn't turn "Edited" flag on.

v4.10
Released June 3rd 2004

• Parameters: Upside-down display supported.

• Structures: Reloading project and selecting Structures windows sometimes caused
Access violation error.

• Fonts: Reloading project and switching from and to easyGUI application
sometimes caused Access violation error.

v4.11
Released June 10th 2004

• C-code: GuiConst.h file header and footer text were not saved.

v4.12
Released June 15th 2004

• C-code: Projects without need for variable/structure pointers didn't create pointer
array, and compilation of target therefore failed.

v4.13
Released June 20th 2004

• Parameters: Compiler prefix editing added.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 216

v4.13a
Released June 23th 2004

• Library changes.

v4.13b
Released August 8th 2004

• C-code: Very complex structures with >100 items caused application error due to
internal static size buffers becoming too small.

v4.13c
Released October 27th 2004

• Some smaller errors corrected.

v5.0.0
Released December 9th 2004

• Color version released.

• Structures: Bitmap item type implemented.

v5.0.1
Released December 13th 2004

• Corrections of minor errors.

v5.0.2
Released December 16th 2004

• InterBase is no longer needed. Instead the Firebird dll file is used.

v5.0.3
Released January 17th 2005

• C code generation: Setting for producing special PC simulator code implemented.

v5.0.4
Released January 19th 2005

• Parameters: Support for AVR flash RAM operation added.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 217

• C code generation: Special PC simulator flag added.

• Library: GuiLib_DrawStr formatted string drawing function added.

• Library: Fixed floating point decimal character error.

v5.0.5
Released February 19th 2005

• Auto redraw mode function added. Possible settings are:

� Continuous updating - functions like before.

� Update on changes - Auto redraw is only performed if the variable in
question has changed.

• Structure editor, bitmap selection: Fixed error that prevented Browse button from
being used, when file name edit box was empty.

v5.0.6
Released March 18th 2005

• Structures: Paragraph item type implemented.

v5.0.7
Released March 22nd 2005

• Paragraph item: Various errors corrected.

v5.1.0
Released March 31st 2005

• Parameters: Support for KEIL reentrant keyword added to the compiler setup.

• easyTRANSLATE released.

v5.1.1
Released March 31st 2005

• Library: Error in structure data decoding when handling Auto redraw flags
corrected.

• Structures: Variable types was not displayed correctly.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 218

v5.1.3
Released April 21st 2005

• Library: Error in auto redrawing items could lead to memory access violations.

v5.1.4
Released May 4th 2005

• Library: GuiLib_Clear now resets cursor, scroll, and auto redraw flags.

• Library: Scrolling is now possible without showing a scroll bar (highlighted line) by
specifying line -1 in the GuiLib_SetScrollPars function call.

• Library: GuiLib_CurStructureIndex variable remembers last displayed structure.

• Variables: Strings with more than 255 characters could not be specified or
entered.

v5.1.5
Released May 28th 2005

• Help function: PDF Active-X component used didn't function with Acrobat Reader
7. PDF file is now called directly as an application.

• File | Close: Hotkey changed from ctrl+C to ctrl+F4, because ctrl+C is used by the
clipboard function.

• GuiFont: Font identifiers was indexed wrongly. Indices was:

#define GuiFont_Text1 0
#define GuiFont_Text2 1
#define GuiFont_Text2Bold 2
#define GuiFont_Text4 3
#define GuiFont_Icon1 4
#define GuiFont_DEFAULT_TEXT_FONT 0

- should be:
#define GuiFont_Text1 1
#define GuiFont_Text2 2
#define GuiFont_Text2Bold 3
#define GuiFont_Text4 4
#define GuiFont_Icon1 5
#define GuiFont_DEFAULT_TEXT_FONT 0

• Manual: GuiLib_CurStructureNdx variable misspelled as
GuiLib_CurStructureIndex.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 219

v5.2.1
Released February 2nd 2006

• Unicode support added.

• Pointer size: A special void *const pointer setup setting added, to be used with
H8S µ-processor and the IAR compiler.

• Library: GuiLib_DrawChar function in library didn't properly support the
GuiConst_AVR_COMPILER_FLASH_RAM compiler directive, which is activated by
setting the "AVR compiler flash RAM operation" option in the Parameter window,
Compiler tab page.

• Library: Clipping didn't always work correctly with upside-down display and
negative Y coordinates.

• Structures: Background box Y size parameters implemented, so that background
box height can be set to any size.

• Font selection window (F6) removed, functionality moved to font editor.

• Font names streamlined:

Old name New name

Text1 ANSI 2 condensed

Text2 ANSI 2

Text2 bold ANSI 2 bold

Text3 ANSI 3

Text4 ANSI 4

Text5 ANSI 5

Text6 ANSI 6

Text7 ANSI 7

Text8 ANSI 8

Icon1 Icon 16x16

Icon2 Icon 32x32

Icon3 Icon 48x48

Icon4 Icon 72x72

Icon5 Icon 202x50

• Unicode fonts added to Unicode version.

v5.2.1a
Released February 14th 2006

• Language window, language setup: Editing, deleting and moving languages were
not handled properly.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 220

• Library: GuiLib_GetTextWidth function declaration in GuiLib.h was in error.

• Structures: Text displayed in complex structures sometimes used the wrong font
for individual characters.

v5.2.2
Released February 21st 2006

• Library: Cursor fields was not handled properly in Unicode mode. Initial display
was ok, but any cursor movement gave garbled cursor fields.

v5.2.2d
Released April 3rd 2006

• Touch interface test version.

v5.2.3
Released April 18th 2006

• Dongle support implemented.

• Windows TTF font import implemented.

• Import/export function implemented.

• Touch screen interface implemented.

• Library: SetClipping function improved.

• Library: GuiLib_Box didn't handle clipping correctly.

• Library: New Unicode support functions for comparing Unicode strings, and for
copying from one Unicode string to another.

v5.3.0
Released March 5th 2007

• Fonts: Cyrillic characters added to Unicode fonts.

• Font editor: PS numerical width value for fonts added.

• Font editor: Selection of a range of characters now possible in the character set
panel.

• Font editor: Check white space control of font characters added.

• Font editor: Enhanced ttf font import.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 221

• Font editing: New selection criteria for font character selection implemented: "All
numerical characters". This setting includes the following characters into
GuiFont.c, no matter which other selections are active: Space, numbers 0~9,
letters A~F, letter h, and the characters period, comma, minus, plus, and colon.

• Parameters, Display: Active area of display feature added.

• Parameters, Display controller: 1 or 2 color planes mode selection added.

• Parameters, Display controller: Mirroring feature added, both horizontally and
vertically.

• Parameters, Color: 5bpp gray scale mode added. ST7529 display controller driver
added, using 5bpp gray scale.

• Parameters, Color: 18bpp color mode added.

• Parameters, Color: Now more than one palette for each color depth.

• Parameters, Compiler: Font pointer lists prefix field implemented. This field is
normally empty, but by setting it to "const" when using Keil compilers the
placement of the font pointer list in RAM instead of flash memory can be
prevented.

• Parameters, Operation: Cursor and scroll wrap around feature added.

• Variables: Advanced variable definition import function.

• Structures, background boxes, didn't work properly when using inverted colors,
i.e. white text on black background.

• Structures: Active area item type added.

• Structures: Better support for Color, B&W and monochrome copy of structure
image.

• Structures: C-button for structure name.

• C code generation: Special compiler settings were also enforced on generated c/h
files, when generating for PC simulator, causing code to be impossible to compile.

• C code generation: Better font compression.

• GuiFont.c/h in AVR compiler mode: "__flash" prefix was duplicated in
GuiLib_FontRecPtr declaration, resulting in compiler warning.

• Library: More Unicode string functions added.

• Library: Color convert functions added.

• GuiDisplay: Hitachi HD61202 driver, GuiDisplay_Init function - C variable used in
loop construct clashed with some compilers using "C" symbol for internal register.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 222

• S6B0741 display controller driver added, using 2 bits per pixel gray scale mode,
and two color planes.

v5.3.0b
Released April 17th 2007

• Parameters, Operation: In easyGUI Monochrome and Color the Cursor box partly
hid the Scroll box.

v5.3.0c
Released June 25th 2007

• Library: Errors with clipping contra relative coordinate origo resolved.

v5.3.0f
Released August 24th 2007

• Library: In some instances dynamic updating of structure elements (cursor fields,
auto redraw fields, etc.) didn't happen.

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 223

- end of document -

easyGUI - Graphical User Interface Tool for Embedded Systems

Copyright © 1999 - 2007 IBIS Solutions ApS

Page 224

	PREFACE
	INSTALLATION
	INSTALLATION
	EASYGUI LICENSING

	INTRODUCTION
	HOW DOES IT WORK?
	THE DISPLAY
	MENUS
	File functions
	Font functions
	Project functions
	C code generation
	Import / export
	Help functions

	FONTS
	FONT TYPES
	CHARACTER MODES
	TEXT FONTS
	Character definition
	Proportional writing
	Font style
	Undefined characters

	FONT COMPRESSION
	CURRENT FONTS

	FONT LIST WINDOW
	FONT EDITING WINDOW
	FONT SETUP
	FONT SELECTION
	Previously in easyGUI
	View filter

	FONT EDITING
	Pixel editing
	PS mark editing
	Editing many characters at once
	Editing commands

	TTF IMPORT
	CHARACTER TESTING

	PROJECT PARAMETERS WINDOW
	BASICS
	Project panel
	Display panel

	DISPLAY CONTROLLER
	COLOR
	Colors panel
	Color / Grayscale mode panel
	Color depth panel
	Palette handling
	Color handling
	RGB format

	SIMULATED DISPLAY
	COMPILER
	Type definitions panel
	Constant declarations panel
	Special compiler settings panel
	Buffer sizes panel

	OPERATION
	Text setup panel
	Auto redraw panel
	Cursor mode panel
	Scroll mode panel
	Module selection panel

	LANGAUGE TRANSLATION WINDOW
	POSITIONS WINDOW
	VARIABLES WINDOW
	IMPORTING DEFINITIONS
	Import setup
	Import type

	Making the import

	STRUCTURES WINDOW
	THE BASICS
	ITEMS
	WINDOW LAYOUT
	STRUCTURE MANAGEMENT PANEL
	ITEM LIST PANEL
	ITEM DATA PANEL
	Structure hierarchy sub-panel
	Primary position sub-panel
	Secondary position sub-panel
	Structure call sub-panel
	Variable sub-panel
	Active area sub-panel
	Clipping sub-panel
	Touch area sub-panel
	Alignment sub-panel
	Foreground color sub-panel
	Background color sub-panel
	Text sub-panel
	Paragraph sub-panel
	Bitmap sub-panel
	Rectangle sub-panel
	Variable formatting sub-panel
	Miscellaneous sub-panel

	DISPLAY PANEL
	USE OF TOUCH AREAS
	1 - Touch interface hardware
	2 - Coordinate training
	3 - Event handling

	C CODE GENERATION
	IMPORT / EXPORT
	CURRENT PROJECT PANEL
	EXTERNAL PROJECT PANEL
	MIDDLE PANEL - CONTROLS AND SETTINGS

	HOW TO SET UP YOUR SYSTEM
	MINIMUM RAM AND ROM REQUIREMENTS
	OPERATING SYSTEM
	SETTING UP THE SYSTEM FOR EASYGUI USE
	1 - Physical display connection
	2 - Setting up easyGUI for your display type
	3 - Display control functions
	Display initialization
	Selecting a display driver
	Display writing
	Light and contrast control

	4 - Compiling the project
	5 - easyGUI interfacing
	GuiLib_Init
	GuiLib_Refresh
	GuiLib_ShowScreen

	TESTING THE SYSTEM
	1 - Establishing some kind of connection
	2 - Turning on a single pixel
	3 - Showing the test pattern
	4 - Showing an easyGUI structure

	HOW TO UTILIZE easyGUI - A TUTORIAL
	EFFICIENT LEARNING
	ITEM TYPES
	VIEWING THE STRUCTURE
	SPLASH STRUCTURE
	Structure details
	Clearing the screen
	Finding this and that item
	Drawing a logo
	A centered, relative text
	PS - nice texts
	Big texts - small texts
	Showing variables

	CONFIG STRUCTURE
	Structure details
	Don't forget the coordinates
	Using an indexed structure
	Utilizing a disappearing indexed structure
	An on/off text
	Backgrounds are important
	The fine art of cursor fields

	MAIN MENU STRUCTURE
	Better looking menu items
	Playing with cursor indices

	FLASH STRUCTURE
	Mixing structures and plain graphics

	LET'S SCROLL

	easyGUI FUNCTION REFERENCE
	GUICONST UNIT
	Constants
	GuiConst_AUTOREDRAW_FIELDS_MAX
	GuiConst_AUTOREDRAW_MAX_VAR_SIZE
	GuiConst_AUTOREDRAW_ON_CHANGE
	GuiConst_AVR_COMPILER_FLASH_RAM
	GuiConst_AVRGCC_COMPILER
	GuiConst_BIT_BOTTOMRIGHT
	GuiConst_BIT_TOPLEFT
	GuiConst_BITMAP_SUPPORT_ON
	GuiConst_BLINK_FIELDS_MAX
	GuiConst_BLINK_SUPPORT_ON
	GuiConst_BYTE_HORIZONTAL
	GuiConst_BYTE_LINES
	GuiConst_BYTE_VERTICAL
	GuiConst_BYTES_PR_LINE
	GuiConst_BYTES_PR_SECTION
	GuiConst_CHAR
	GuiConst_CHARMODE_ANSI
	GuiConst_CHARMODE_UNICODE
	GuiConst_CLIPPING_SUPPORT_ON
	GuiConst_CODEVISION_COMPILER
	GuiConst_COLOR_BYTE_SIZE
	GuiConst_COLOR_DEPTH_1
	GuiConst_COLOR_DEPTH_2
	GuiConst_COLOR_DEPTH_4
	GuiConst_COLOR_DEPTH_5
	GuiConst_COLOR_DEPTH_8
	GuiConst_COLOR_DEPTH_12
	GuiConst_COLOR_DEPTH_15
	GuiConst_COLOR_DEPTH_16
	GuiConst_COLOR_DEPTH_18
	GuiConst_COLOR_DEPTH_24
	GuiConst_COLOR_MAX
	GuiConst_COLOR_MODE_GRAY
	GuiConst_COLOR_MODE_PALETTE
	GuiConst_COLOR_MODE_RGB
	GuiConst_COLOR_PLANES_1
	GuiConst_COLOR_PLANES_2
	GuiConst_COLOR_RGB_STANDARD
	GuiConst_COLOR_SIZE
	GuiConst_COLORCODING_B_MASK
	GuiConst_COLORCODING_B_MAX
	GuiConst_COLORCODING_B_SIZE
	GuiConst_COLORCODING_B_START
	GuiConst_COLORCODING_G_MASK
	GuiConst_COLORCODING_G_MAX
	GuiConst_COLORCODING_G_SIZE
	GuiConst_COLORCODING_G_START
	GuiConst_COLORCODING_R_MASK
	GuiConst_COLORCODING_R_MAX
	GuiConst_COLORCODING_R_SIZE
	GuiConst_COLORCODING_R_START
	GuiConst_CONTROLLER_COUNT_HORZ
	GuiConst_CONTROLLER_COUNT_VERT
	GuiConst_CURSOR_FIELDS_MAX
	GuiConst_CURSOR_MODE_STOP_TOP
	GuiConst_CURSOR_MODE_WRAP_AROUND
	GuiConst_CURSOR_SUPPORT_ON
	GuiConst_DECIMAL_COMMA
	GuiConst_DECIMAL_PERIOD
	GuiConst_DISPLAY_ACTIVE_AREA
	GuiConst_DISPLAY_ACTIVE_AREA_CLIPPING
	GuiConst_DISPLAY_ACTIVE_AREA_COO_REL
	GuiConst_DISPLAY_ACTIVE_AREA_X1
	GuiConst_DISPLAY_ACTIVE_AREA_Y1
	GuiConst_DISPLAY_ACTIVE_AREA_X2
	GuiConst_DISPLAY_ACTIVE_AREA_Y2
	GuiConst_DISPLAY_BYTES
	GuiConst_DISPLAY_HEIGHT
	GuiConst_DISPLAY_HEIGHT_HW
	GuiConst_DISPLAY_WIDTH
	GuiConst_DISPLAY_WIDTH_HW
	GuiConst_FLOAT_SUPPORT_ON
	GuiConst_FONT_UNCOMPRESSED
	GuiConst_ICC_COMPILER
	GuiConst_INT8S
	GuiConst_INT8U
	GuiConst_INT16S
	GuiConst_INT16U
	GuiConst_INT24S
	GuiConst_INT24U
	GuiConst_INT32S
	GuiConst_INT32U
	GuiConst_INTCOLOR
	GuiConst_ITEM_TEXTBLOCK_INUSE
	GuiConst_ITEM_TOUCHAREA_INUSE
	GuiConst_KEIL_COMPILER_REENTRANT
	GuiConst_LANGUAGE_CNT
	GuiConst_LANGUAGE_XXX
	GuiConst_MAX_TEXT_LEN
	GuiConst_MAX_VARNUM_TEXT_LEN
	GuiConst_MIRRORED_HORIZONTALLY
	GuiConst_MIRRORED_VERTICALLY
	GuiConst_PALETTE_SIZE
	GuiConst_PICC_COMPILER_ROM
	GuiConst_PIXEL_OFF
	GuiConst_PIXEL_ON
	GuiConst_PTR
	GuiConst_REL_COORD_ORIGO_INUSE
	GuiConst_REVERSED_BYTE_PAIRS
	GuiConst_ROTATED90DEGREE
	GuiConst_ROTATED90DEGREE_LEFT
	GuiConst_ROTATED90DEGREE_RIGHT
	GuiConst_ROTATED_OFF
	GuiConst_ROTATED_UPSIDEDOWN
	GuiConst_SCROLL_MODE_STOP_TOP
	GuiConst_SCROLL_MODE_WRAP_AROUND
	GuiConst_SCROLL_SUPPORT_ON
	GuiConst_TEXT
	GuiConst_TOUCHAREA_MAX

	GUILIB UNIT
	Constants
	GuiLib_CHR_SET
	GuiLib_NO_CURSOR
	GuiLib_NO_RESET_AUTO_REDRAW
	GuiLib_RESET_AUTO_REDRAW

	Variables
	GuiLib_ActiveCursorFieldNo
	GuiLib_CurStructureNdx
	GuiLib_LanguageCharSet
	GuiLib_LanguageIndex
	GuiLib_ScrollActiveLine
	GuiLib_ScrollTopLine
	GuiLib_ScrollVisibleLines

	Functions
	GuiLib_BlinkBoxMarkedItem
	GuiLib_BlinkBoxStart
	GuiLib_BlinkBoxStop
	GuiLib_BorderBox
	GuiLib_Box
	GuiLib_Clear
	GuiLib_ClearDisplay
	GuiLib_Cursor_Down
	GuiLib_Cursor_End
	GuiLib_Cursor_Home
	GuiLib_Cursor_Select
	GuiLib_Cursor_Up
	GuiLib_Dot
	GuiLib_DrawChar
	GuiLib_DrawStr
	GuiLib_FillBox
	GuiLib_GetDot
	GuiLib_GetTextLanguagePtr
	GuiLib_GetTextPtr
	GuiLib_GetTextWidth
	GuiLib_GrayScaleToRgbColor
	GuiLib_HLine
	GuiLib_Init
	GuiLib_InvertBox
	GuiLib_InvertBoxStart
	GuiLib_InvertBoxStop
	GuiLib_Line
	GuiLib_MarkDisplayBoxRepaint
	GuiLib_PixelToRgbColor
	GuiLib_RedrawScrollList
	GuiLib_Refresh
	GuiLib_ResetClipping
	GuiLib_ResetDisplayRepaint
	GuiLib_RgbColorToGrayScale
	GuiLib_RgbToPixelColor
	GuiLib_Scroll_Down
	GuiLib_Scroll_End
	GuiLib_Scroll_Home
	GuiLib_Scroll_To_Line
	GuiLib_Scroll_Up
	GuiLib_ScrollLineOffsetY
	GuiLib_SetClipping
	GuiLib_SetLanguage
	GuiLib_SetScrollPars
	GuiLib_ShowBitmap
	GuiLib_ShowBitmapAt
	GuiLib_ShowScreen
	GuiLib_StrAnsiToUnicode
	GuiLib_TestPattern
	GuiLib_TouchAdjustReset
	GuiLib_TouchAdjustSet
	GuiLib_TouchCheck
	GuiLib_UnicodeStrCmp
	GuiLib_UnicodeStrCpy
	GuiLib_UnicodeStrLen
	GuiLib_VLine

	GUIDISPLAY UNIT
	Functions
	GuiDisplay_Init
	GuiDisplay_Lock
	GuiDisplay_Refresh
	GuiDisplay_Unlock

	easyTRANSLATE
	INSTALLATION
	PRINCIPLES
	HOW TO USE

	easyGUI PC SIMULATION TOOLSET
	PURPOSE
	NECESSARY FILES
	COMPILATION
	LIMITATIONS

	easyGUI VERSIONS

