M74LS191P

SYNCHRONOUS PRESETTABLE UP/DOWN 4-BIT BINARY COUNTER WITH MODE CONTROL

DESCRIPTION

The M74LS191P is a semiconductor integrated circuit containing a synchronous 4-bit binary (hexadecimal) counter function with up/down control and preset inputs.

FEATURES

- Up/down switching with up/down control inputs
- Asynchronous preset input provided
- Enable input provided
- Easy cascade connection possible
- High-speed counting (fmax=40MHz typical)
- Wide operating temperature range (T_a= −20~+75°C)

APPLICATION

General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

When enable input E is low, load input \overline{LOAD} is high and the count pulses are applied to clock input T, the number of count pulses appears as 4-bit pure binary code in the outputs Q_A , Q_B , Q_C and Q_D in synchronization with the count pulses. When the up/down control input \overline{U}/D is made low, count-up begins and when made high, count-down begins. Counting is performed when T changes from low to high.

Presetting is performed regardless of the count pulses and by applying the data to data inputs D_A , D_B , D_C and D_D and by setting \overline{LOAD} low, the D_A , D_B , D_C and D_D signals appear in outputs Q_A , Q_B , Q_C and Q_D irrespective of the status of the other inputs and the counter can be preset.

High appears in the terminal count output TC during count-up while 15_2 appears in Q_A , Q_B , Q_C and Q_D and during count-down while 0_2 appears. Low appears in the ripple clock output \overline{RC} only when \overline{E} and T are low and 15_2 appears in outputs Q_A , Q_B , Q_C and Q_D during count-up or 0_2 appears in the outputs during count-down. \overline{E} , TC and \overline{RC} are used when cascade-connecting the counter. (Refer to application example.)

 \overline{E} can be changed from high to low irrespective of the status of T but when changed from low to high, T must be high. Perform the change for \overline{U}/D when T is high.

SYNCHRONOUS PRESETTABLE UP/DOWN 4-BIT BINARY COUNTER WITH MODE CONTROL

FUNCTION TABLE (Note 1)

LOAD	E	Ū/D	Т	QΑ	Qв	Qс	Q□
L	×	×	×	DA	DB	Dc	D _D
Н	L	L.	1	Count	up		
Н	L	Н	1	Count	down		
Н	н	×	×	Inhibit	t		

Note 1 \uparrow : Transition from low to high level

X: Irrelevant

Ē	TC ⁽¹⁾	Т	RC
L	н	L	L
Ļ	н	н	н
Н	Х	Х	н
Х	L	Х	н _

(1) TC is the output but the signal generated internally by

the following logical expression.;

$$\begin{split} & \text{TC} = \overline{Q}_{A} \bullet \overline{Q}_{B} \bullet \overline{Q}_{C} \bullet \overline{Q}_{D} \bullet (\overline{U}/D) \bullet \cdots \bullet \text{Count-up} \\ & \text{TC} = \overline{Q}_{A} \bullet \overline{Q}_{B} \bullet \overline{Q}_{C} \bullet \overline{Q}_{D} \bullet (\overline{U}/D) \bullet \cdots \bullet \text{Count-down} \end{split}$$

OPERATION TIMING DIAGRAM

Details of timing diagram

- (1) Preset to 13
- (2) Count-up 14, 15, 0, 1, 2
- (3) Count inhibit
- (4) Count-down 1, 0, 15, 14, 13

ABSOLUTE MAXIMUM RATINGS ($Ta = -20 \sim +75 \, \tau$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
·Vcc	Supply voltage		-0.5~+7	٧
٧ı	Input voltage		-0.5~+15	V
V ₀	Output voltage	High-level state	-0.5~ V _{CC}	٧
Topr	Operating free-air ambient temperature range		− 20 ~ + 75	r
Tstg	Storage temperature range		-65~+150	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = -20 \sim +75 \, ^{\circ}$ C, unless otherwise noted)

Symbol	Parameter			Limits			
				Тур	Max	Unit	
Vcc	Supply voltage		4.75	5	5.25	٧	
Тон	High-level output current	V _{OH} ≥2.7V	0		-400	μΑ	
		V _{OL} ≤0.4V	0		4	mA	
loL	Low-level output current	V _{OL} ≦0.5V	0		5.25 -400	mΑ	

SYNCHRONOUS PRESETTABLE UP/DOWN 4-BIT BINARY COUNTER WITH MODE CONTROL

ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75 ^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Test conditions		Limits			
					Min	Typ *	Max	Unit
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
Vic	Input clamp voltag	ge	V _{CC} =4.75V, I _{IC} =-1	8mA			-1.5	٧
Voн	High-level output	voltage	$V_{CC}=4.75V, V_1=0.8V$ $V_1=2V, I_{OH}=-400\mu A$		2.7	3.4		V
Vol	Low-level output	voltage	V _{CC} =4.75V	I _{OL} = 4 mA		0.25	0.4	V V
	High-level	T, LOAD, U/D, DA~DD	$V_1 = 0.8V, V_1 = .2 V$ $V_{CC} = 5.25V, V_1 = 2.7V$	J		0.33	20	μΑ
Іін	input current	T, LOAD, U/D, DA~DD	V _{CC} =5.25V, V _I =10V	1 441			0.1	mA
IIL	Low-level input current	T, LOAD, U/D, DA~DD	V _{CC} =5.25V, V _I =0.4V				-0.4 -1.2	mA
los	Short-circuit outp	ut current (Note 2)	V _{CC} =5.25V, V _O = 0 V		- 20		— 100	mA
Icc	Supply current		V _{CC} =5.25V (Note 3)			20	35	mA

 $[\]clubsuit$: All typical values are at V_{CC} = 5V, Ta = 25° C.

SWITCHING CHARACTERISTICS ($V_{CC}=5~V$, Ta=25~C, unless otherwise noted)

	Parameter	Test conditions	Limits			Unit
Symbol	Farameter	rest conditions	Min	Тур	Max	Oilit
fmax	Maximum clock frequency		20	40		MHz
t pL H	Low-to-high-level, high-to-low-level output propagation			19	33	. ns
tphL	time, from input LOAD to outputs QA, QB, QC, QD		-	25	50	ns
t pL H	Low-to-high-level, high-to-low-level output propagation			11	32	ns
tphL	time, from inputs DA, DB, DC, DD to outputs QA, QB, QC, QD			25	40	ns
t _{PLH}	Low-to-high-level, high-to-low-level output propagation			11	20	ns
t _{PHL}	time, from input T to output RC			11	24	ns
t _{PLH}	Low-to-high-level, high-to-low-level output propagation			12	24	ns
tphL	time, from input T to outputs QA, QB, QC, QD	C _L = 15pF (Note 4)		14	36	ns
t _{PL H}	Low-to-high-output, high-to-low-level output propagation	·		20	42	ns
tphL	time, from input T to output TC			24	52	ns .
t _{PL} H	Low-to-high-level, high-to-low-level output propagation			22	45	ns
tphL	time, from input U/D to output RC			20	45	ns
t _{PL} H	Low-to-high-level, high-to-low-level output propagation			15	33	ns
tphL	time, from input U/D to output TC			15	33	ns
tpLH	Low-to-high-level, high-to-low-level output propagation			10	33	ns
tphL	time, from input E to output RC			11	33	ns

TIMING REQUIREMENTS (V_{CC}=5V, T_a=25°C, unless otherwise noted)

Symbol Parameter	0	Test conditions	Limits			
		rest conditions		Тур	Max	Unit
tw(TL)	Clock input T low pulse width		25	9		ns
tw(LOAD)	Load LOAD pulse width		35	10		ns
tr	Clock pulse rise time			2000	100	ns
t _{SU(D)}	Setup time DA~DD to LOAD		20	9		ns
t _{SU(EL)}	Setup time E low to T		40	24		ns
th(D)	Hold time DA~DD to LOAD		5	0		ns
th(ĒL)	Hold time E low to T		5	2		ns
trec(LOAD)	Recovery time LOAD to T		20	16		ns

Note 2. All measurements should be done quickly and not more than one output should be shorted at a time.

Note 3. I_{CC} is measured with all the inputs at OV.

SYNCHRONOUS PRESETTABLE UP/DOWN 4-BIT BINARY COUNTER WITH MODE CONTROL

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3

