M74LS191P ## SYNCHRONOUS PRESETTABLE UP/DOWN 4-BIT BINARY COUNTER WITH MODE CONTROL #### DESCRIPTION The M74LS191P is a semiconductor integrated circuit containing a synchronous 4-bit binary (hexadecimal) counter function with up/down control and preset inputs. #### **FEATURES** - Up/down switching with up/down control inputs - Asynchronous preset input provided - Enable input provided - Easy cascade connection possible - High-speed counting (fmax=40MHz typical) - Wide operating temperature range (T_a= −20~+75°C) ### **APPLICATION** General purpose, for use in industrial and consumer equipment. #### **FUNCTIONAL DESCRIPTION** When enable input E is low, load input \overline{LOAD} is high and the count pulses are applied to clock input T, the number of count pulses appears as 4-bit pure binary code in the outputs Q_A , Q_B , Q_C and Q_D in synchronization with the count pulses. When the up/down control input \overline{U}/D is made low, count-up begins and when made high, count-down begins. Counting is performed when T changes from low to high. Presetting is performed regardless of the count pulses and by applying the data to data inputs D_A , D_B , D_C and D_D and by setting \overline{LOAD} low, the D_A , D_B , D_C and D_D signals appear in outputs Q_A , Q_B , Q_C and Q_D irrespective of the status of the other inputs and the counter can be preset. High appears in the terminal count output TC during count-up while 15_2 appears in Q_A , Q_B , Q_C and Q_D and during count-down while 0_2 appears. Low appears in the ripple clock output \overline{RC} only when \overline{E} and T are low and 15_2 appears in outputs Q_A , Q_B , Q_C and Q_D during count-up or 0_2 appears in the outputs during count-down. \overline{E} , TC and \overline{RC} are used when cascade-connecting the counter. (Refer to application example.) \overline{E} can be changed from high to low irrespective of the status of T but when changed from low to high, T must be high. Perform the change for \overline{U}/D when T is high. ## SYNCHRONOUS PRESETTABLE UP/DOWN 4-BIT BINARY COUNTER WITH MODE CONTROL ### FUNCTION TABLE (Note 1) | LOAD | E | Ū/D | Т | QΑ | Qв | Qс | Q□ | |------|---|-----|---|---------|------|----|----------------| | L | × | × | × | DA | DB | Dc | D _D | | Н | L | L. | 1 | Count | up | | | | Н | L | Н | 1 | Count | down | | | | Н | н | × | × | Inhibit | t | | | Note 1 \uparrow : Transition from low to high level X: Irrelevant | Ē | TC ⁽¹⁾ | Т | RC | |---|-------------------|---|-----| | L | н | L | L | | Ļ | н | н | н | | Н | Х | Х | н | | Х | L | Х | н _ | (1) TC is the output but the signal generated internally by the following logical expression.; $$\begin{split} & \text{TC} = \overline{Q}_{A} \bullet \overline{Q}_{B} \bullet \overline{Q}_{C} \bullet \overline{Q}_{D} \bullet (\overline{U}/D) \bullet \cdots \bullet \text{Count-up} \\ & \text{TC} = \overline{Q}_{A} \bullet \overline{Q}_{B} \bullet \overline{Q}_{C} \bullet \overline{Q}_{D} \bullet (\overline{U}/D) \bullet \cdots \bullet \text{Count-down} \end{split}$$ ### **OPERATION TIMING DIAGRAM** Details of timing diagram - (1) Preset to 13 - (2) Count-up 14, 15, 0, 1, 2 - (3) Count inhibit - (4) Count-down 1, 0, 15, 14, 13 ## ABSOLUTE MAXIMUM RATINGS ($Ta = -20 \sim +75 \, \tau$, unless otherwise noted) | Symbol | Parameter | Conditions | Limits | Unit | |----------------|--|------------------|-----------------------|------| | ·Vcc | Supply voltage | | -0.5~+7 | ٧ | | ٧ı | Input voltage | | -0.5~+15 | V | | V ₀ | Output voltage | High-level state | -0.5~ V _{CC} | ٧ | | Topr | Operating free-air ambient temperature range | | − 20 ~ + 75 | r | | Tstg | Storage temperature range | | -65~+150 | °C | ## **RECOMMENDED OPERATING CONDITIONS** ($Ta = -20 \sim +75 \, ^{\circ}$ C, unless otherwise noted) | Symbol | Parameter | | | Limits | | | | |--------|---------------------------|-----------------------|------|--------|--------------|------|--| | | | | | Тур | Max | Unit | | | Vcc | Supply voltage | | 4.75 | 5 | 5.25 | ٧ | | | Тон | High-level output current | V _{OH} ≥2.7V | 0 | | -400 | μΑ | | | | | V _{OL} ≤0.4V | 0 | | 4 | mA | | | loL | Low-level output current | V _{OL} ≦0.5V | 0 | | 5.25
-400 | mΑ | | # SYNCHRONOUS PRESETTABLE UP/DOWN 4-BIT BINARY COUNTER WITH MODE CONTROL ## **ELECTRICAL CHARACTERISTICS** ($Ta = -20 \sim +75 ^{\circ}C$, unless otherwise noted) | Symbol | Parameter | | Test conditions | | Limits | | | | |--------|--------------------------|---------------------|--|------------------------|--------|-------|--------------|--------| | | | | | | Min | Typ * | Max | Unit | | VIH | High-level input voltage | | | | 2 | | | V | | VIL | Low-level input voltage | | | | | | 0.8 | V | | Vic | Input clamp voltag | ge | V _{CC} =4.75V, I _{IC} =-1 | 8mA | | | -1.5 | ٧ | | Voн | High-level output | voltage | $V_{CC}=4.75V, V_1=0.8V$
$V_1=2V, I_{OH}=-400\mu A$ | | 2.7 | 3.4 | | V | | Vol | Low-level output | voltage | V _{CC} =4.75V | I _{OL} = 4 mA | | 0.25 | 0.4 | V
V | | | High-level | T, LOAD, U/D, DA~DD | $V_1 = 0.8V, V_1 = .2 V$
$V_{CC} = 5.25V, V_1 = 2.7V$ | J | | 0.33 | 20 | μΑ | | Іін | input current | T, LOAD, U/D, DA~DD | V _{CC} =5.25V, V _I =10V | 1 441 | | | 0.1 | mA | | IIL | Low-level input current | T, LOAD, U/D, DA~DD | V _{CC} =5.25V, V _I =0.4V | | | | -0.4
-1.2 | mA | | los | Short-circuit outp | ut current (Note 2) | V _{CC} =5.25V, V _O = 0 V | | - 20 | | — 100 | mA | | Icc | Supply current | | V _{CC} =5.25V (Note 3) | | | 20 | 35 | mA | $[\]clubsuit$: All typical values are at V_{CC} = 5V, Ta = 25° C. ## **SWITCHING CHARACTERISTICS** ($V_{CC}=5~V$, Ta=25~C, unless otherwise noted) | | Parameter | Test conditions | Limits | | | Unit | |-------------------|--|--------------------------------|--------|-----|-----|-------| | Symbol | Farameter | rest conditions | Min | Тур | Max | Oilit | | fmax | Maximum clock frequency | | 20 | 40 | | MHz | | t pL H | Low-to-high-level, high-to-low-level output propagation | | | 19 | 33 | . ns | | tphL | time, from input LOAD to outputs QA, QB, QC, QD | | - | 25 | 50 | ns | | t pL H | Low-to-high-level, high-to-low-level output propagation | | | 11 | 32 | ns | | tphL | time, from inputs DA, DB, DC, DD to outputs QA, QB, QC, QD | | | 25 | 40 | ns | | t _{PLH} | Low-to-high-level, high-to-low-level output propagation | | | 11 | 20 | ns | | t _{PHL} | time, from input T to output RC | | | 11 | 24 | ns | | t _{PLH} | Low-to-high-level, high-to-low-level output propagation | | | 12 | 24 | ns | | tphL | time, from input T to outputs QA, QB, QC, QD | C _L = 15pF (Note 4) | | 14 | 36 | ns | | t _{PL H} | Low-to-high-output, high-to-low-level output propagation | · | | 20 | 42 | ns | | tphL | time, from input T to output TC | | | 24 | 52 | ns . | | t _{PL} H | Low-to-high-level, high-to-low-level output propagation | | | 22 | 45 | ns | | tphL | time, from input U/D to output RC | | | 20 | 45 | ns | | t _{PL} H | Low-to-high-level, high-to-low-level output propagation | | | 15 | 33 | ns | | tphL | time, from input U/D to output TC | | | 15 | 33 | ns | | tpLH | Low-to-high-level, high-to-low-level output propagation | | | 10 | 33 | ns | | tphL | time, from input E to output RC | | | 11 | 33 | ns | ## TIMING REQUIREMENTS (V_{CC}=5V, T_a=25°C, unless otherwise noted) | Symbol Parameter | 0 | Test conditions | Limits | | | | |---------------------|-------------------------------|-----------------|--------|------|-----|------| | | | rest conditions | | Тур | Max | Unit | | tw(TL) | Clock input T low pulse width | | 25 | 9 | | ns | | tw(LOAD) | Load LOAD pulse width | | 35 | 10 | | ns | | tr | Clock pulse rise time | | | 2000 | 100 | ns | | t _{SU(D)} | Setup time DA~DD to LOAD | | 20 | 9 | | ns | | t _{SU(EL)} | Setup time E low to T | | 40 | 24 | | ns | | th(D) | Hold time DA~DD to LOAD | | 5 | 0 | | ns | | th(ĒL) | Hold time E low to T | | 5 | 2 | | ns | | trec(LOAD) | Recovery time LOAD to T | | 20 | 16 | | ns | Note 2. All measurements should be done quickly and not more than one output should be shorted at a time. Note 3. I_{CC} is measured with all the inputs at OV. # SYNCHRONOUS PRESETTABLE UP/DOWN 4-BIT BINARY COUNTER WITH MODE CONTROL ## MITSUBISHI LSTTLs **PACKAGE OUTLINES** MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3