Basic Com “{ or AUR™

- t‘.f'eﬂted_hgzlml[:ﬂllﬂﬂﬁlﬂﬂ | Bojan|. — www.fastAVR.com |

User Manual

FastAVR Basic compiler Manual

FastAUR

Basic like Compiler
Version 4.0.0

User Manual

March 2004 by MicroDesign

FastAVR Basic compiler Manual

1. Introduction

Illu!an|li--".i IGsTe .wwm;FIﬂstHllﬂ:c'u'm.

My sincere thanks to Michael Henning and Steve Childress, for theirs assistance in writing Help and Manual.
Welcome to FastAVR - the best Basic-like language compiler for the Atmel AVR family of 8-bit microprocessors!

Basic is a High Level Language, much easier to learn and understand than assembler or C.

FastAVR Basic is a language consisting of most of the familiar BASIC keywords but has been significantly
extended with many additional very useful functions, like LCD, 12C, 1WIRE, Keyboards and many others!
FastAVR Basic Compiler has been specially written to fully support the programmer's needs to control the new
AVR Microcontroller family!

FastAVR Basic Compiler allows complex operations to be expressed as short but powerful Keywords, without
detailed knowledge of the CPU instruction set and internal circuit architecture. However, the processor-s data
sheets remains the main source anyway.

FastAVR Basic Compiler hides unnecessary system details from the beginning programmer, but also provides
assembler output for advanced programmers!

FastAVR Basic Compiler enables a faster programming and testing cycle.

FastAVR Basic Compiler allows the structure of the program to be expressed more clearly.

1.1. Compiler Operating System Compatibility

Windows 98SE
Windows NT 4
Windows 2000
Windows XP

FastAVR Basic compiler Manual

1.2. AVR chip supported

The most current list of AVR chips supported by the compiler is in the readme file that accompanies the installation
software. Refer to Atmel's specifications or web site for descriptions. At this User's Guide release, the Atmel AVR
chips supported are as follows.

2313

2323

2343

2333

4433

4414

8515

4434

8535

8534

ATiny13

ATiny2313

ATiny26

ATmegai61
ATmegal63
ATmegal03

Atmega8 (see note 1)
Atmegal6 (see note 1)
Atmega32 (see note 1)
Atmega323 (see note 1)
ATmega64 (see note 1)
ATmegal28 (see note 1)

& For processors with RAM sizes of 256 bytes or less, such as the 2313, the compiler will create much
smaller code sizes — typically 30% or better. This is done by generating code with addresses that are 8
rather than 16 bits — eliminating much needless code.

Most other Basic and C compilers do not provide this important optimization for small-RAM
MICroprocessors.

Note 1: Compiler support for these processors requires some user-written definitions of some new register names
and special coding for certain new features.

FastAVR Basic compiler Manual

1.3.

Development Environment

The FastAVR Integrated Development Environment (IDE) runs on the Microsoft Windows operating systems. The
IDE includes a user friendly, language-context based editor for easliy creating and altering program modules. The
IDE, shown below, uses the Atmel AVR Studio software (freeware from Atmel and inexpensive and widely available
in-circuit AVR chip programming hardware.

FastAVR Editor
for your

program’s
source code

-

FastAVR
Compiler

~,

)

Optional Assembly
Language Source
and Listing

Atmel Binary code
AVR “:> for AVR
Studio Chip
Assembler
/
AVR In-
circuit
Programmer

FastAVR Development Environment

A 4

Optional Use of Atmel
AVR Studio Debugger

The FastAVR user interface makes the use of the editor, compiler, and Atmel Studio assembler and chip
programmer very easy — there is a single window to control the process. The Atmel Studio's user interface is not

needed in most cases, with FastAVR.

The Atmel Studio software is freely available from the Atmel Web site.
There are several in-circuit programmers (ISP) for the AVR chip family. Choose one that is compatible with the ISP
software you intend to use. Many of the inexpensive hardware ISP products are compatible with the ISP in the AVR
Studio package. A PC parallel port interface to the ISP hardware is commonly used.

FastAVR Basic compiler Manual

2.1, Source code / File Data
FastAVR source code is plain text.
The editor within FastAVR should be used to manage source code and assure the code is properly tab-indented.

Source code is displayed by the editor with color highlighting. These denote different keywords and variable types in
the program. The editor supports indenting and un-indenting blocks of code.

2.2. Source code - Structure

Source code must be written in the following order:

1. Meta-statements (compiler directives) - where the keywords begin with "$"
2. Declaration of Subroutines (also known as procedures), Functions or Interrupt service routines, using the
DECLARE statement

& Note that Subs, Functions and Interrupt service routines must be declared before they are referenced

or coded.
3. Declaration of variables — scalars and arrays, using the DIM statement
4. Constants — their definitions
5. Programm body
2.3. Statements - multiple per line

One line of text in the source code may contain multiple statements. Each statement is separated from the next with
a colon ":".

Example:
A = B/2: Print A

A statement may not be continued to a second line.

FastAVR Basic compiler Manual

2.4. Comments

All text after a single quote is commentary. A code statement must be completed prior to beginning a comment.
A single quote may be the first character in a line, making the entire line a comment.

' this is comment

Multi-line comments are also supported:

(...

) 1

2.5. Names - Symbols

User-defined constants, variable names, line labels (for GOTO) and I/O aliases (see $DEF) must not begin with a
digit and may contain the letters A-Z, a-z, the digits 0-9 and the underscore "_". The compiler is case-insensitive, so
"Abc" and "abC" and "ABC" are the same name.

Names must be no longer than 31 characters.
Examples of valid names:

a, A, abc, abc, abc_123

& Avoid use of a leading underscore "_" to reduce the chance of conflicts with compiler-generated run-time
symbols . User-defined names must differ from the reserved words in FastAVR. These include the compiler
directives, AVR register names, AVR instruction names, etc.

To reduce mistakes in the use of types, some programmers use naming conventions such as:
Constants are in UPPERCASE
Variables use the first few characters of every name depict the type, such as:

Const strTITLE = "King Of The World"

Const STRLENMAX1 = 20

Dim strSomeName As String * STRLENMAX1

Dim SomeName As Byte ' no prefix implies Byte
Dim bSomeName As Byte ' or be explicit

Dim bitSomeName As Bit

Dim wdSomeName As Word

DimM intSomeName As Integer

Dim lngSomeName As Long

The capital letters help readability.

FastAVR Basic compiler Manual

2.6. Types

2.6.1. FastAVR language General

FastAVR is a compiled language. Thus, all variables must be defined prior to their use.

The AVR chips use two independent memory address spaces: One for program code in ROM and one for random
access, read/write memory (RAM). EEPROM storage is handled differently than program ROM or RAM. Code
cannot be executed from RAM. Constants can be retrieved from program ROM using special instructions or meta-
directives when the constant is declared.

& The AVR chip family uses separate memory for code and for data. You must make known to the
compiler which data is to go into which memory space. The compiler of course places executable code
automatically. Where to store constants is the planning challenge. Programmers not accustomed to this
architecture often write code assuming that constants and variables are in the same address space. In
some cases, the compiler cannot detect the coding mistake. In AVR chips with EEPROM storage, decisions
must be made as to which constants and infrequently changing variables are to be stored in that address
space.

There are compiler directives (meta-statements) to tell FastAVR how constants should be stored:

e Store a constant in program memory (typically, flash ROM).

e Store a constant in program memory but copy them to RAM during program startup. With this method, the
programmer accesses constants using the same coding methods as for variables, as in traditional
microprocessor architectures. This costs extra storage space and program boot-up initialization code and
execution time.

e Store constants or variables in EEPROM. These are read or written using run-time procedures rather than
instructions to directly address EEPROM space as is done for RAM and ROM accesses.

2.6.2. Type Conversions

In some languages, such as Microsoft's Visual Basic, the compiler and run-time libraries do automatic type
conversions, e.g., to/from string/arithmetic. This permits the programmer to be generally unconcerned about mixed
types in an expression or as arguments to functions and subroutine procedures. In embedded microprocessors, this
is not done for reasons of code size and speed optimization. The embedded microprocessor programmer must
beware of mixing types in the same expression, and the type of the variable receiving the result of an expression.
The compiler will not produce warnings in all cases. For example, adding a FastAVR "word" to an "Integer" with the
result going to an integer or word type can produce different results, based on the programmers assumptions about
signed or unsigned arithmetic.

Type Conversions — In Assignments

There are no compile-time type conversions built into the compiler for expressions. Any such conversions must be
done by coding such in-line or via user functions.

In assignment statements such as the below, if B is a Byte variable and w is a Word:

b=w

Then b receives the low 8 bits of w.
That is, the value to the right of the "=" is converted to the type of the variable to the left of the "=".

FastAVR Basic compiler Manual

If wis an Integer with a value of, say, -2, then b will become &hFE or 254.
In this assignment:
w=D>b
the low 8 bits of w receive b, and the high 8 bits of w will be zero.
In type conversions such as these, with signed numbers (integer and long), the programmer is responsible for

accommodating the possibility that the sign is ignored and a multi-byte 2's complement number can become
fragmented.

Type Conversions — Implicit

In statement with an expression who's results are not assigned to a specified type, such as:

Print b+w

The run-time code will make the result be the type of the left-most name. This name may refer to a variable or a
constant.

Type Conversions — Bit to Byte or Word or Integer
The 0 or 1 value of the bit variable is placed in the least significant bit.

Type Conversions — Byte or Word or Integer to Bit

A Bit variable to the left of an "=" receives the least significant bit of the value to the right of the "=".

& To change a Bit variable based on the result of an expression such as X > 0, use an IF statement.

2.6.3. Types Arithmetic

FastAVR supports arithmetic (pronunciation: "arith-metic") types of variables as shown in the table, below.
Unsupported types are shown for clarity.

For signed numbers, two's complement arithmetic is used by the AVR chips and by the compiler. Thus, —1 in any
signed type is all 1's and -2 has the least significant bit = 0.

Type Size (Bytes) Range
Bit 1 bit 0 or 1l
Byte (unsigned char) 1 0-255

-32767 to +32767

0 to 65535

—-2147483648 to +2147483647
-2.350987E-38 to +8.507062E+37

Integer (signed)
Word (unsigned)
Long (signed)
Float

SO NDN

The 32 bit signed integer type is a Long in this compiler.
Use of Longs or Float should be minimized because of the large code sizes required.

FastAVR Basic compiler Manual

2.6.4. Assigning Statements

Arithmetic variables

An arithmetic variable may receive a value from
e A constant
e Avariable
e The result of a Function call returning an arithmetic type
e An arithmetic expression which may include a function

The assignment statement is of this form:
<variable> = <expression or constant or function>

Examples:
Gamma = 123
Gamma X+123

Gamma = FunctionName ()

String Variables
A string variable may receive a value from

e A string constant

e A string constant stored in an array (in FLASH)
The assignment statement is of this form:

<variable> = <expression or constant or function>

Examples:
Stringl = String2

I/O Register Variables, Set and Reset

A special form of assignment statement exists for AVR register bits:
Set <I/O bit name>
Reset <I/O bit name>
Where <I/O bit name> refers to an AVR register and bit.

Examples:
Set PORTB.O0 'place a 1 in port B bit 0 (least significant bit)

Reset PORTB.7 'place a 0 in port B bit 7 (most significant bit)

I/O Register Variables in General Assignment Statements

A special form of assignment statement exists for AVR register bits:
<varname> = <|/O bit name>

Example:

b = PORTB.1 'variable b is set to 1 or 0 depending on latched port B bit 1
b = PINB.1 'variable b is set to 1 or 0 depending on momentary state of port
B bit 1

The /O register variables may also be used in IF statements, but only where the comparison operator is the "=
operator; i.e., IF PORTB.0 > 0 is not permitted.

FastAVR Basic compiler Manual

2.7. Constants

2.7.1. Constants - Scope

Constants apply to all source statements in all files included in the compilation.

2.7.2. Constants- Numbers and Their Syntax

Decimal

Constants which are decimal (base 10) are written as follows:
Decimal positive number: <digits>
Decimal negative number: -<digits>

Where
<digits> are the digits 0-9

Hexadecimal (base 16)

Constants which are hexadecimal (base 16) are written as follows:
&h<digits>

Where
<digits> are the digits 0-9, A-F

Examples
&h0l1 is one, &hl0 is sixteen, &hOF is fifteen,

&hFFFF if stored into a Word or Long variable is 65535,
&hFFFF if stored into a variable of type Integer is -1,

Binary (base 2)

Constants which are base (base 2) are written as follows:
&b<digits>
Where
<digits>is 0 or 1

Example
&§b1001 'is nine.

FastAVR Basic compiler Manual

2.7.3. Constants, Arithmetic - Declaring

Constants must be declared at the beginning of the program, before or after declaring variables. The constant's
name must be unique from variables and compiler keywords.

Arithmetic constants use this syntax:

Const <constname> = <constant>

Where
<constnames is a previously unused valid variable name (see 6), and
<constant> is one of the following:
1. A decimal constant such as 1 or —1 or 99
2. A hexadecimal number such as &hFFFF
3. A binary number such as &b0110
4. A Scientific notation decimal constant such as -2.1479231E-23

5. A previously defined constant's <varname>
6. A simple math expression.

& An expression to the right of the "=" is permitted.

It is the programmer's responsibility to use numeric constants in a manner consistent with the storage variable's
type. For example, a Byte variable cannot store a Const x = 256. A compile-time warning cannot be assured.

2.7.4. Constants, Arithmetic Arrays - Declaring

One-dimension arrays of constants may be stored in FLASH memory and accessed from flash at run time. The
following syntax is used:

Dim <varname> As Flash <type>

Establishes the existence of the array. To fill (initialize) the array at compile time, the following is used, after the DIM
statement.

Examples:
Dim abc As Flash Byte

... later in program ...
ABC = 1,2,3,4,

5,6,7 ' Stores the binary codes for these numeric values (not ASCII)

Note: continues on second line due to comma after the "4".

Dim DigitsASCII As Flash Byte
DigitsASCII = ' access with x = DigitsASCII (n)

The compiler will create different code to access constants in FLASH than for constants stored in RAM.
Constants in Flash MUST be initialized at the END of Program!

See also: Constants, String Arrays

FastAVR Basic compiler Manual

2.7.5. Constants, String

Strings in FLASH memory
Strings may be stored in FLASH memory as follows:

Dim Stringl As Flash String
Stringl = "Hello World"

Or
Const Stringl = "Hello World"

The string is stored in FLASH memory with a null byte terminator. The name String1 refers to that constant in
FLASH. Because it is a constant, the DIM statement needed no size declaration.

Constants in Flash MUST be initialized at the END of Program!

2.7.6. Constants, String Arrays

String constants may be placed into arrays in FLASH as follows.
Dim Stringsl As Flash String
Stringsl = One, Two, Three, "Only Three"

This places four null-terminated strings in Flash memory with "Strings1" referring to the first element of the array of
strings. The following code will access the strings

Constants in Flash MUST be initialized at the END of Program!

Example 1
Dim s As String * 10

s = Stringsl(2) ' copy from FLASH to RAM

Example 2:
Print Stringsl(n) ' where N is 0 to 3

FastAVR Basic compiler Manual

2.8. Variables

2.8.1. Variables - Scope

Variables declared in the program heading are global to all source statements in all files included in the compilation.
BIT variables are stored in processor registers and are thus global.

2.8.2. Variables, Arithmetic - Declaring

Non-dimensioned variables must be declared at the beginning of the program, after declaring constants and before
code. The variable's name must be unique from constants and compiler keywords.

It is the programmer's responsibility to use variables in a manner consistent with the storage variable's type. For
example, a Byte variable cannot store x = 256. A compile-time warning cannot be assured.

Variables larger than one byte are stored in successive bytes. These types are not aligned on word or long address
boundaries. This is because the AVR chips address memory only as bytes.

Arithmetic variables use this syntax:
DIM <varname> AS <type> [AT <location>] [, ..]

Where
<varnames is a previously unused valid variable name (see 6), and
<type> is one of the following:

Type Storage Bit Usage

Bit One bit One bit

Byte (unsigned char) One byte 8 bits

Integer (signed) Two bytes Two's complement, 16 bits
Word (unsigned) Two bytes 16 bit positive number
Long (signed) Four bytes Two's complement, 32 bits
Float Four bytes IEEE

String Len + 1

<location> if given, is a constant defining the memory address at which the variable may be stored.

Examples:
Dim somevariable As Byte
Dim B As Byte
Dim This_123 As Word, delta_gamma As Bit

& If the "AT" option is used, all subsequent variables are stored at successive locations. The use of "AT"
is error prone if used after other variables have been declared and is not recommended.

FastAVR Basic compiler Manual

2.8.3. Variables, Arithmetic - Run-time Type Conversions:

Some forms of type conversions are done by the compiler at run time, in storing a variable's value. Generally, the
programmer should not assign a value to a variable which is from an expression or variable of a different type, or
which is too large or differs in signed vs. unsigned. The following table summarizes:

Variable Type Assignment Type Result

Bit Byte, Integer, Word or Long Valid for all but Long (LSB
used)

Byte (unsigned char) Integer, Word or Long Least significant byte
Integer (signed) Word or Long Least significant two bytes
Word (unsigned) Word or Long Least significant two bytes
Long (signed) Word Least significant two bytes
Float

2.8.4. Variables, Arithmetic - Arrays

One dimension Arrays of arithmetic variables type Byte, Word and Integer are supported.

Syntax: DIM <varname>(n) AS <vartype> where <vartype> is as listed above.

n" must be a numeric or previously defined named constant
Arrays can be initialized with:
ArrName= (d0, dl1, d2,)

or with

MemLoad (VarPtr(n), 4, 4, 4, 15, &hff, shff)
Example:
Dim someBytes (aconstant) As Byte
It is the programmer's responsibility to declare and use array sizes so that they will fit into the available RAM.
& The compiler does not create run-time error checking for array index validity. For example, the code x =

a(999) is invalid for an AVR 2313 chip.
Do not use the same name for an array and for a non-dimensioned variable.

2.8.5. Variables, String

Strings in FastAVR assume 8 bit ASCII characters. Strings are null-terminated. For string constants, the compiler
inserts a null. For variables, the programmer must ensure that the string's declared length allows for one extra
character for the null.

FastAVR Basic compiler Manual

String variables (see below) are declared with a fixed length.

& The programmer must not permit a string variable to receive a value longer than the length of the
variable, minus one. If this happens, subsequent memory storage will be overwritten and/or a string may not
be null-terminated. This causes difficult to debug problems. String length limit checks are not done at run time
for reasons of efficiency.

String variables are blocks of RAM into which run-time code places ASCII characters terminated by a null. They are
declared as follows:
Dim <varname> As String *n

where
n is a numeric constant such as 8 or 12

This form is permitted:
DIM <varname> AS STRING * <ConstantName>

where ConstantName is the name of a constant.
Examples:
Const MAXLEN = 32
Dim LastName As String * MAXLEN
Dim FirstName As String * 16
In both cases, the storage allocated is one greater than the value of the constant, to make room for the terminating

null.
The "" does not mean the same thing as it does in other languages (e.g., operating with a pointer).

& For reasons of efficiency, the compiler does not generate string length checking code. The
programmer must assure that a string variable's storage size is sufficient, including the necessary terminating
null byte. The run-time libraries truncate a string to fit the defined size of a string variable.

2.8.6. Variables, String Arrays

One dimension Arrays of Strings variables are supported.

Syntax: DIM <varname>(n) AS STRING * <ConstantName>

n" must be a numeric or previously defined named constant
Arrays can be initialized with:

ArrName= (StrConst0, StrConstl, StrConst2,)
or with

ArrName= (StrConst)

FastAVR Basic compiler Manual

to init all elements to StrConst!

Example:

Dim MyString(10) As String * 7 ' ten Strings seven characters each (total 8)

If there is only one string constant then the whole array will be initialiyed to this String Constant!
MyString=(" ") ' will init all array elements to " "
MyString=("123", "ABC", " ") ' will init first three elements

It is the programmer's responsibility to declare and use array sizes so that they will fit into the available RAM.
& The compiler does not create run-time error checking for array index validity. For example, the code x =

a(999) is invalid for an AVR 2313 chip.
Do not use the same name for an array and for a non-dimensioned variable.

Note also that Strings itself acts like arrays of Bytes

s3(4) is fifth element from String s3 (starting with index 0).

2.9. Declarations - Procedures and Functions

2.9.1. Declaring Procedures

Procedures are like subroutines. They receive passed variables as parameters and return values only by affecting
global variables.

Procedures must be declared in the program heading prior to coding the procedure itself or referencing the
procedure in code.

& The code for the procedure itself must appear after the entire heading section of the program.
The syntax is:
Declare Sub <name> ()

Or

Declare Sub <name> (<parameter> As <type> [,])

FastAVR Basic compiler Manual

Where <name> is any valid name (see 6) and matches exactly the name used in coding the procedure (a.k.a.
subroutine) itself, later in the program.
And <parameter> is the dummy name of a variable,
NOTE: Do not choose a dummy variable name which is the same as the name of a global variable in the
program;
And <type> is the type of the dummy variable as expected by the code for the procedure.
Type BIT cannot be passed.

The order of the parameters is fixed. The order used in the DECLARE statement must be the same order used in
the actual code for the procedure.

Examples:

Declare Sub gamma ()
Declare Sub min(a As Integer, b As Integer)

: Run-time type checking is not performed. If a variable of a type other than that in the DECLARE is
passed, unpredictable results or branching may occur.

2.9.2. Declaring Functions

Functions are like procedures but return values. A function, like a variable, has a particular type.
Functions must be declared in the program heading prior to coding the procedure itself or referencing the procedure
in code.

& The code for the function itself must appear after the entire heading section of the program.
Function names are used to the left of an "=" in an assignment statement.
The code for the function itself must appear after the heading section of the program.
The syntax for a function is the same as for a procedure except as noted below. See 7.
Declare Function <name> () As <return type>
Or

Declare Sub <name> (<parameter> As <type> [,...]) As < function type >

Where <name> and <parameter> and <type> are as explained for DECLARE SUB,
And <function type> is the type returned by the function, as if the function were an ordinary variable.

Functions may be of type Byte, Word, Integer, Long or Float.

& Functions of type String or Bit are not permitted.

The value returned by the function is that assigned using the function's name in the left side of an assignment
statement which is within the function.
Function names are used to the left of an "=" in an assignment statement.

FastAVR Basic compiler Manual

2.9.3. Declaring Interrupts

Interrupt procedures are subroutines used to process a hardware-generated interrupt.
Interrupt procedures are identical to Procedures (see 7), except:

e They must never be called from statements in the code

e They are invoked by the AVR chip's interrupt hardware
Declare Interrupt <interrupt cause name> ()

Where <interrupt caise name> is the symbolic name of an interrupt cause for the AVR chip targeted by the
compilation.

&A list of interrupt cause names is in section 11.
The parentheses after the name are necessary.
Example:

Declare Interrupt Ovfl ()

Means that later in the code there is an interrupt procedure coded for the timer 1 overflow interrupt source.

2.10. Statements

2.10.1. Statements, Arithmetic Expressions

An arithmetic assignment statement takes the following form:
<varnames = <expression>
or
Print <expression> ' a special assignment to convert to a string type

where <expression> is
<name> <arithmetic operator> <name > [...]

where
<name> is the name of an arithmetic variable or arithmetic constant
<arithmetic operator> is an arithmetic operator (see 9)

Parentheses may be used in expressions to control the order of operations.

Examples:

FastAVR Basic compiler Manual

B
B+1
B/2
B+ (C/2) +D*E

i

2.10.2. Statements, String Expressions

An string assignment statement takes the following form:

<varname> = <string expression>
or

Print <string expression> ' a special assignment

Where <string expression> is
e A string constant
e A string variable which has received a value
e A built-in (library) string function defined later in this document. User-written functions may not return type
string (or Bit).

The variable receiving the result should be large enough to store the entire result. If not, the result is truncated to
make room for the automatically-inserted terminating null byte.

& If the name to the right of the "=" is a string constant, or if the Print statement's argument is a string
constant, then note: Special code is generated to copy the string from FLASH to RAM.

2.11. Program Flow

2.11.1. Statement, Do - Loop

The DO statement creates a loop. DO/LOOP loops may be nested.
The following forms are permitted:

1. Infinite loop
DO
<statements>
LOOP ' Only way out is a Exit Do and GoTo

2. Conditional loop
DO
LOOP WHILE <condition>

FastAVR Basic compiler Manual

Where <condition> is an expression evaluating to true or false.

Examples:

WHILE x=0

WHILE x < 8

WHILE a >= b

WHILE Stringl <> "ABC"

In either form, the statement

EXIT DO

within the loop causes the statement below the LOOP statement to be executed.

Example:
DO
<statements>
IF <condition> THEN
EXIT DO ' cannot be on same line as THEN
END IF
LOOP

As in non-looping code, interrupts may occur and execute an interrupt procedure.

2.11.2. Statement, While - When

The WHILE statement creates a loop, similar to DO.

The form is:
WHILE <condition>
<statements>
WEND

The statement
EXIT WHILE

within the loop causes the statement below the WEND statement to be executed.

As in non-looping code, interrupts may occur and execute an interrupt procedure.

2.11.3. Statement, For - Next

The FOR statement creates a loop as in traditional BASIC. FOR/NEXT loops may be nested.

The forms are:

1. Increment by +1

FOR <iteration variable> = <initial value> TO <final value>

FastAVR Basic compiler Manual

<statements>
NEXT

Where <iteration variable> is a numeric variable large enough to contain the <final value>, and

<initial value> is a constant or variable who's value is stored in <initial value> prior to the first iteration, and
<iteration value> is incremented by one after all <statements have been executed>, and

<final value> is a constant or variable who's value is compared with <iteration variable> after all
<statements> are executed.

At least one iteration is assured.

2. Increment or decrement by arbitrary amount
FOR <iteration variable> = <initial value> TO <final value> STEP <delta>
<statements>
NEXT

Where <delta> is a positive or negative numeric of numbers who's value is added to <iteration value>. A
named constant or variable may not be used. Instead, use the DO statement.

2.11.4. Statement - If

In this section, the notation
<relation>
means
<expression> <relational operator> <expression>

Example of a <relation>:
A=B

& Note that <expression> can be a special I/O register reference such as "PINB.2".

Single line form

The syntax has these forms:

1. IF <relation>THEN <statement>
Statement is executed if <relation> is true.
Example: IF a > b THEN Print "yes"

2. |F <relation> <logical operator> <relation> THEN <statement>
Statement is executed if all <relation> are true.
Example: IF a > b AND a < 10 THEN Print "yes

3. Same as above, but with additional logical operators.

Example: IF a>b AND a <10 OR a > 100 THEN Print "yes

Parentheses may be used for clarity.

The ":" for multiple statements per line may not be used in the single-line IF.

FastAVR Basic compiler Manual

& The ELSE clause is not permitted in a single-line IF statement.

Multi-line form

The syntax has these forms:
1. |IF <conditional>THEN
<statements>
END IF
2. |F <conditional>THEN
<statements>
ELSE
<statements>
END IF
3. |IF <conditional>THEN
<statements>
ELSEIF <conditional> THEN
<statements>
END IF

4. |F <conditional>THEN
<statements>
ELSEIF <conditional> THEN
<statements>
ELSE
<statements>
END IF

2.11.5. Statement - Select Case

Selects a block of statements from a list, based on the value of an expression or a variable.

In the below, the notation
<value>

means
e avariable of the same type as in the SELECT CASE statement, including type String,
e a constant of the same type as in the SELECT CASE statement, including type String,

Syntax forms:

SELECT CASE <variable>

CASE <value>
<statements>

CASE <value> TO <value>
<statements>

CASE <relational operator> <value>
<statements>

CASE ELSE
<statements>

FastAVR Basic compiler Manual

END SELECT
The CASE ELSE may be omitted.

The keyword "TQ", above, is normally used with numeric values. It is the same as
<value> <= <value>.

If <value> is a string, the TO operator tests for equality.

2.11.6. Statement - Goto

Syntax:
GOTO <label>

Where <label> is a valid name as in variable name, and that name is the same as the name used in a label
statement.

A label statement is a symbol which first in the line of code and ends with a colon:
<name>:

where the name is not a reserved keyword

Example:
Here:
GOTO Here
GOTO There
There:

Good programming style is to use GOTO sparingly, typically to branch out of a deeply nested conditional or nested
loops.

f Warning: The scope of a label is global. A GOTO can be coded to jump into a SUB or FUNCTION, or
out of such. This will corrupt the stack pointer management. A GOTO in a SUB or FUNCTION should
reference only labels in the same SUB or FUNCTION. A GOTO outside any SUB or FUNCTION should not
reference a label inside a SUB or FUNCTION. The compiler does not enforce these rules.

2.11.7. Statement - On X Goto

Description:
Jumps to one of listed line labels, depending on value of a numeric variable or numeric constant, shown here as
"X". Compiles to code smaller and faster than an IF or Case statement.

Syntax:
On x GoTo LabelA, LabelB, LabelC [, ..]

If numeric variable x is zero, then the program continues at line label "Labe1a", if 1 then to LabelB, and so on.

FastAVR Basic compiler Manual

f The programmer must ensure the validity of the variable (X in this explanation). The value must be in
the range of 0 to n-1, where there are n choices in the statement. In the example, X must be in the range of

0 to 2. The line labels

Example:
DIM ABC As Byte

ABC =1
On ABC GoTo LabelO,
<other code>

LabelA:

Print "ABC was 0"
LabelB:

Print "ABC was 1"
LabelC:

Print "ABC was 2"

2.11.8. Statement - On X Sub()

Description:

Calls one of the listed Sub(), depending on value x. Compiles to code smaller and faster than an IF or Case

statement containing Sub Calls.
This is similar to On X GOSUB lable1, label2, ... in other languages.

The action taken is the same as shown for On X GoTo except that the Sub() is called whereas On X GOTO does a

jump, not a call. On return from the Sub, the code following the
On X Sub() is executed after the Sub() returns.

& The call to the Sub() must include no parameters within the parentheses.

f The programmer must ensure the validity of the variable (X in this explanation). The value must be in

the range of 0 to n-1, where there are n choices in the statement.

Example:

DIM ABC as Word
DECLARE SUB Foo ()
DECLARE SUB Bar ()
ABC = 1

DO

On ABC Foo (), Bar()
Print "Returned From Sub"

LOOP

SUB Foo ()
Print "ABC was 0"
END SUB

SUB Bar ()
Print "ABC was 1"
END SUB

FastAVR Basic compiler Manual

2.12. Compiler and Limitations

FastAVR Basic Compiler translates your Basic source file into assembler code. The assembler file is then
assembled with Atmel's free Assembler (AvrAsm32.exe). Of course, the generated assembler file can be edited with
additional assembler statements and then recompiled!

LIMITATIONS:
While testing Bit variables of any kind (bit var, port.bit or var.bit) only "=" or "<>" can be used!

Dim b As Bit
Dim n As Byte

If b=1 Then ' OK
If n.5=1 Then ' OK
If PinD.5=1 Then ' OK
If PinD.5<>1 Then' OK
If b>0 Then ' NOT OK
If n.5<1 Then ' NOT OK

If PinD.5>0 Then ' NOT OK
Also, if user wishes to use bitwise operators with logic, bitwise must be in parentheses!
If (n And 1)>5 Or b=1 Then ' OK

Basic itself does not have a CAST like C does! So if the left side of an assignment is of type "Byte" then only the
lower bytes of words and/or Integers from the right side of the expression are processed!

Byte = Word / Bytel 'wrong result
Wordl = Word / Bytel
Byte = Wordl 'correct result

When using an expression with the Print statement, result will be the same type as first element in expression:
Dim a As Byte
Dim b As Word
Dim c As Word

Print 10+ (a*b) 'Byte result - 10 is byte
Print 10+ (a*a) 'Byte result

c=10+ (a*b)

Print c 'Correct result

2.13. Language Specific

Basic programs are written using the rastavr integrated editor, just as we would write a letter. This letter, your
program, is pure ASCII text and can also be opened or edited with any simple (ASCII) editor like Window's Notepad.
While writing this "letter," however, we must follow the language syntax understood by the rastavr Basic Compiler.
Let us start with some Basic rules, following these simple practical examples. Fortunately, Basic syntax and
philosophy are quite easy to understand.

So let us start!

To make the program easier to read, It is recommend that comments be used first. For example:

FastAVR Basic compiler Manual

N N YN,
'/// FastAVR Basic Compiler for AVR

'/// First program using 4433

'/// Author:

'/// Date :

N N N NNV,

As can be seen the comment starts with a single quote character ('), while the REM keyword is not supported

(obsolete).
Later in the program, comments may be added in virtually every line to clarify a line purpose, such as:

Statements ' make pin 4 of portd an output

Now we continue with some non-executable statements (also called Meta statements). The following three lines are
absolutely necessary:

SDevice=4433 'tells the compiler which chip we are using.
SStack=32 'reserves the estimated number of bytes for the stack.
$Clock=8 'defines the crystal frequency in megahertz.

All configuration statements start with the character s ($1.cd, s12C, Skey, $watchdog, ...)
For other Meta statements please refer to the Keywords list.

Our next step is declaring (dimensioning) variables.
Dim var As Type

Keyword Dim reserves space for a defined variable in SRAM according to the type of variable.
Var is the variable's name. Allowed variable names may contain any alphanumeric characters that do not duplicate
Keywords. Variable names are case insensitive.

FastAVR Basic Compiler supports the following element types:

Bit - occupies 1 bit (0 to1), located in r2 and r3 internal registers, (allowing 16 "bit variables" to be defined)

Byte - occupies 1 byte (0 to 255)

Integer - Occupies 2 bytes (-32768 to +32767)

Word - occupies 2 bytes (0 to 65335)

string - an additional parameter is needed to specify the length and occupies the length+1 byte because they are
terminated with a zero.

Long - occupies 4 bytes (-2147483648 to +2147483647)

Float - occupies 4 bytes (-2.350987E-38 to +8.507062E+37)

Dim var as String*6
Var can be 6 characters long but occupies 7 bytes in SRAM. The 7th byte contains a zero for termination.

Optionally, the user can specify memory space for variables like:
Dim var as Xram Byte

var will be placed in External RAM (if available)

In addition, the location can be specified:

Dim var as Xram Byte at &h8100

var will be placed in External RAM (if available) at address &h8100.

Since | abandoned the pata and Lookup statements, a table of constants can be created in code memory (Flash)
using the keyword Dim.

Dim TableName as Flash Byte

Dim TableName as Flash String

Length could be also declared, since some statements (Find) wants Length of the table.
Dim TableName (16) as Flash Byte

FastAVR Basic compiler Manual

The table can later be initialized:

TableName = 11, 22, 33, 44, 55, 66,
12, 13, 14, 15, 16, 17,
23, 24, 25, 26, 27, 28

TableName = "sample string"
The Table is finished when no comma is encountered!
Access to table elements:

var = TableName (index)

Of course, index can be a complex expression or even a function call!

Generaly, Tables in Flash works like an Arrays and they MUST be initialized at the END of Program!!

pim declared variables are global, so they can be reached from everywhere in the program and their value is not

destroyed.

We continue with declaring Subs and Functions.
Declare Sub NameOfSub (parameter list)
Declare Sub Testl (a As Byte, b As Word)

Declare Function NameOfFunc (parameter list) as Type
Declare Function Test2(a As Byte, b As Byte) as Byte

Also, Interrupt subroutines must be declared here.
Declare Interrupt Ovfl ()

This forms HEAD of PROGRAM and MUST be in this order: (!)
1. Metastatements,

2. Dims,

3. Declarations,

4. Constants definitions,

5. All other statements.

Now we can finally start with executable statements.

Usually we first initialize the system: assign the initial value of variables and/or internal registers for needed settings,

define each port pin direction, etc . . .

We continue by writing the main loop, which is a never-ending loop in most cases.
Do

Body of the program (statements)
Loop

This loop is the heart of the program and may consist of:
- other loops

- assignments

- mathematical calculations

- keywords

- calls to subs or functions, etc...

More than one statement can be written on a line, separating each statement with a colon:
For n=0 To 15: Print n: Next

However, a single statement per line with a comment is preferable for clarity.
For n=0 To 15 'n will run from 0 to 15

Print n 'output n to serial port
Next

FastAVR Basic compiler Manual

Many expressions are supported in Fastavr. From very basic assignments like:
a=>5

To more complex like:
a= (b+12) *c-3*d

rastAVR Basic Compiler performs all math operations in full hierarchal order. This means there is precedence to the
operators. Multiplication and division are performed before addition and subtractions. As an example, to ensure the
operations are carried out in the order needed, use parentheses to group the operations.

Even calls to system and user functions can be factors in expressions:
a=5*Test (15) +Adc8 (3)

Where Test is your function called with parameter 15 and Adc8(3) is a system function that returns an 8bit value as
a result of the analog measurement on channel 3.

List of mathematical operators:

+ plus sign

- minus sign

* asterisk (multiplication symbol)
/ slash (division symbol)

Mod modulus operator

List of relational operators:
= equality

<> inequality

<= less than or equal

>= greater than or equal

< lessthan

> greater than

List of logical operators:
and conjunction

or disjunction

List of boolean operators:

And, & boolean conjunction, bitwise and
or, | boolean disjunction, bitwise or
Xor, ~ boolean Xor

Not boolean complement

Other operators also have special meanings, such as:

" double quotation as string delimiters

, comma as a parameter separator

. period for ports or variable bit delimiters

; semicolon is used when more than one parameter is used (i.e., Print a; b; ¢)
' single quotation mark starts a comment

Numeric constants can be in decimal format:
a=33

in hexadecimal:
a=&h21 'dec 33

or even in bynary:
a=&b00100001 'dec 33

FastAVR Basic compiler Manual

A Label can be used as a line identifier. Label is an alphanumeric combination ending with a colon.
If a=0 Then

Goto ExitLabel
End If

Other statements

ExitLabel: 'this is a Label
After the main loop we write all used and previously declared subs and functions, including interrupt subroutines.

The subroutine itself starts with the keyword Sub or Function, followed by the name and parameter list (if one
exists)

Sub Testl(a As Byte, b As Word)

Function Test2 (a As Byte, b As Byte) as Byte

Parameter list must be identical to the declaration of the sub!

With the keyword Local we can declare local variables.
Local var as Type

Bits, Strings and Arrays are always Global!
The use and lifetime of local variables are limited to this subroutine.
The rules for Type are the same as for the Dim.

The body of Sub or Function is a complete program needed to solve a particular problem.
The Function can return a value using the keyword Return.

If you have serious trouble in programming, especially if in doubt about the compiled results, please email
source files to the mailing list for support!

FastAVR HINTS!

All internal registers can be accessed direct from basic:

XDIV = &h05 'changing clock for Mega
MCUCR = MCUCR or &h38 'enter powerdown mode

Dim Str_0 As String*15

Dim Str_1 As String*15

Dim Str_2 As String*15

Dim Str_3 As String*15

Dim s As String*15 ' working string
Dim n As Byte

MemCopy (16, Str_0+16*n, s) ' copies n-th string from Str_0 into string s (acts like Array of
Strings!)

Str_2="FastAVR"
n=Str_2(4) ' n=65 Strings acts like Arrays - elements are accessable also by index

Happy programming!

FastAVR Basic compiler Manual

2.14. Interrupts

All AVR interrupts are supported by FastAVR!

Interrupt Ovfl (), Save All

Interrupt service routines are just like normal subroutines. Of course, instead of using the keyword Sub we will use
Interrupt. The table of short names listed below may be used for Interrupt names!

Very important is the Save x directive. Save x determines how many registers will be saved before calling the
interrupt. This depends on what variables are used in the routine.

save 0, will save SREG only, could be omitted,

save 1, will save SREG, zl and zh only.

save 2, as Save 0 plus r24 and r25

save 3, as Save 1 plus r0, r1, xI and xh

save 4, as Save 2 plus r0, r1, r20, r21, r22, r23, xl and xh

save A1l will save SREG and all registers from r0 to r5 and r19 to r31

When the Interrupt routine is more complex, use save 2, Save 3 Of Save All.

N NI,

Interrupt Ovfl () 'simple routine, no save
Timerl=&h7000 'reloads timerl for 10ms
Toggle PortB.2 'toggles portb.2

End Interrupt

When user dont know about using Save, start with A11 and then try the minor versions!

Here is a list of available Interrupts

Int Int Type for 2313

INTO External InterruptO

INT1 External Interruptl

ICP1 Input Capturel Interrupt

OC1 Output Comparel Interrupt

OVF1 Overflowl Interrupt

OVFO0 Overflow0O Interrupt

URXC UART Receive Complete Interrupt
UDRE UART Data Register Empty Interrupt
UTXC UART Transmit Complete Interrupt
ACI Analog Comparator Interrupt

Int Int Type for 4433

INTO External InterruptO

INT1 External Interruptl

ICP1 Input Capturel Interrupt

OC1lA Output ComparelA Interrupt

OVF1 Overflowl Interrupt

OVFO0 Overflow0O Interrupt

SPI SPI Interrupt

URXC UART Receive Complete Interrupt
UDRE UART Data Register Empty Interrupt
UTXC UART Transmit Complete Interrupt
ADCC ADC Interrupt

ERDY EEPROM Interrupt

ACI Analog Comparator Interrupt

Int Int Type for 8515

INTO External InterruptO

INT1 External Interruptl

ICP1 Input Capturel Interrupt

FastAVR Basic compiler Manual

OC1lA Output ComparelA Interrupt

OC1B Output ComparelB Interrupt

OVF1 Overflowl Interrupt

OVFO0 Overflow(O Interrupt

SPI SPI Interrupt

URXC UART Receive Complete Interrupt
UDRE UART Data Register Empty Interrupt
UTXC UART Transmit Complete Interrupt
ACI Analog Comparator Interrupt

Int Int Type for 8535

INTO External InterruptO

INT1 External Interruptl

oc2 Timer2 Compare Interrupt

OVF2 Overflow2 Interrupt

ICP1 Input Capturel Interrupt

OoClAa Output ComparelA Interrupt

OC1B Output ComparelB Interrupt

OVF1 Overflowl Interrupt

OVFO0 Overflow0O Interrupt

SPI SPI Interrupt

URXC UART Receive Complete Interrupt
UDRE UART Data Register Empty Interrupt
UTXC UART Transmit Complete Interrupt
ADCC ADC Conversion Complete Handle
ERDY EEPROM Write Complete Handle
ACI Analog Comparator Interrupt

Int Int Type for ATmegalO3

INTO External InterruptO

INT1 External Interruptl

INT2 External Interrupt?2

INT3 External Interrupt3

INT4 External Interrupt4

INTS External Interrupt)b

INT6 External Interrupt6

INT7 External Interrupt?

0oCc2 Output Compare2 Interrupt

OVF2 Overflow2 Interrupt

ICP1 Input Capturel Interrupt

OoClAa Output ComparelA Interrupt

OC1B Output ComparelB Interrupt

OVF1 Overflowl Interrupt

0oCO Output CompareO Interrupt

OVFO0 Overflow0O Interrupt

SPI SPI Interrupt

URXC UART Receive Complete Interrupt
UDRE UART Data Register Empty Interrupt
UTXC UART Transmit Complete Interrupt
ADCC ADC Conversion Complete Handle
EEWR EEPROM Write Complete Handle
ACI Analog Comparator Interrupt

Int Int Type for ATmegal8

INTO External InterruptO

INT1 External Interruptl

0oc2 Output Compare2 Interrupt

OVF2 Overflow2 Interrupt

ICP1 Input Capturel Interrupt

OC1lA Output ComparelA Interrupt

OC1B Output ComparelB Interrupt

OVF1 Overflowl Interrupt

OVFO OverflowO Interrupt

SPI SPI Interrupt

FastAVR Basic compiler Manual

Store Program Memory Ready Interrupt

Store Program Memory Ready Interrupt

Store Program Memory Ready Interrupt

URXC UART Receive Complete Interrupt
UDRE UART Data Register Empty Interrupt
UTXC UART Transmit Complete Interrupt
ADCC ADC Conversion Complete Handle
ERDY EEPROM Write Complete Handle
ACI Analog Comparator Interrupt

TWI Two wire interface Interrupt
SPM

Int Int Type for ATmegaléb

INTO External InterruptO

INT1 External Interruptl

0oc2 Output Compare2 Interrupt

OVF2 Overflow2 Interrupt

ICP1 Input Capturel Interrupt

OC1lA Output ComparelA Interrupt

OC1B Output ComparelB Interrupt

OVF1 Overflowl Interrupt

OVFO OverflowO Interrupt

SPI SPI Interrupt

URXC UART Receive Complete Interrupt
UDRE UART Data Register Empty Interrupt
UTXC UART Transmit Complete Interrupt
ADCC ADC Conversion Complete Handle
ERDY EEPROM Write Complete Handle
ACI Analog Comparator Interrupt

TWI Two wire interface Interrupt
INT2 External Interrupt2

OCO Output Compare(O Interrupt

SPMR

Int Int Type for ATmega323

INTO External InterruptO

INT1 External Interruptl

INT2 External Interrupt2

0oc2 Output Compare2 Interrupt

OVF2 Overflow2 Interrupt

ICP1 Input Capturel Interrupt

OoClAa Output ComparelA Interrupt

OC1B Output ComparelB Interrupt

OVF1 Overflowl Interrupt

0oCO Output CompareO Interrupt

OVFO0 Overflow0O Interrupt

SPI SPI Interrupt

URXC UART Receive Complete Interrupt
UDRE UART Data Register Empty Interrupt
UTXC UART Transmit Complete Interrupt
ADCC ADC Conversion Complete Handle
ERDY EEPROM Write Complete Handle
ACI Analog Comparator Interrupt
TWSI Two wire interface Interrupt
SPMR

Int Int Type for ATmegal28

INTO External InterruptO

INT1 External Interruptl

INT2 External Interrupt2

INT3 External Interrupt3

INT4 External Interrupt4

INTS External Interrupt)b

INT6 External Interrupt6

INT7 External Interrupt?

0oCc2 Output Compare2 Interrupt

OVF2 Overflow2 Interrupt

FastAVR Basic compiler Manual

ICP1 Input Capturel Interrupt
OoClAa Output ComparelA Interrupt
OC1B Output ComparelB Interrupt
OVF1 Overflowl Interrupt

0CO0 Output CompareO Interrupt
OVFO Overflow(O Interrupt
SPI SPI Interrupt

URXCO UARTO Receive Complete Interrupt
UDREO UARTO Data Register Empty Interrupt
UTXCO UARTO Transmit Complete Interrupt
ADCC ADC Conversion Complete Handle

ERDY EEPROM Write Complete Handle

ACT Analog Comparator Interrupt

OC1lcC Output ComparelC Interrupt

ICP3 Input Capture3 Interrupt

OC3A Output Compare3A Interrupt

OC3B Output Compare3B Interrupt

OC3C Output Compare3C Interrupt

OVF3 Overflow3 Interrupt

URXC1 UART1 Receive Complete Interrupt
UDRE1 UART1 Data Register Empty Interrupt
UTXC1 UART1 Transmit Complete Interrupt
TWI Two wire interface Interrupt

SPMR Store Program Memory Ready Interrupt

Devices not listed have the same interrupt names!

2.15. Outputs

FastAVR Basic Compiler compiles the Basic source file in the currently active editor window by pressing the RUN

button! An assembler source file will be generated if no errors are encountered!

Then Atmel's free Assembler (AvrAsm.exe) is called to generate an executable file in standard Intel Hex format!
Also, Lst and Obj files are generated at the same time! The Obj file can be loaded directly into Atmel's free
debugger-simulator AvrStudio!

Test.bas ———-> Test.asm —> Test.hex, Test.obj and Test.eep (If InitEE is used!)

If the compiler is run while an Assembler window is active then only the Assembler will be called!

2.16. Memory Usage

With every declared variable, space is reserved in internal SRAM. The available SRAM memory depends on the
chip, from 64bytes in ATiny22 to 4k in ATmega103. Except for the always needed stack space, no SRAMs20 is
used by the compiler.

In addition to SRAM, AVR also has a register file from 0 to 31. These are the Compilers working space.

Dim b As Bit will occupy one bit from R3 and R4 internal registers! No SRAM locations are needed!
Dim n As Byte will occupy one byte, starting at &h60 in SRAM.

FastAVR Basic compiler Manual

Dim i As Integer occupies two bytes, nextto variable n at &h61and &h62

Dim w As Word occupies two bytes, nextto variable i at &h61and &h62

Dim s As String*5 will occupy six(6) bytes, five for variable s and one for the string terminator "zero". In this
case s starts after variable w in position &h63.

Dim x As Long occupies four bytes.

Dim £ As Float occupies four bytes.

Because the entire AVR family are 8-bit microcontrollers the most efficient code is obtained by using variables of
type Byte.

FastAVR uses two software stacks. The first one for temporary storage and for return addresses while calling
Subroutines or Functions. This stack starts at the end of SRAM and grows downward. The second stack is used to
store Local variables and variables that are passed to subroutines. This stack is defined by the programmer with the
Meta Statement:

Sstack=20. This means that the stack will start 20 bytes below the top of SRAM and will also grow downward!

Each Local or passed variable to a Sub or Function uses stack.

When using conversion routines that convert a number to a string, the compiler will need additional SRAM space
starting from the second stack UP. This is also true when Strings or StringsConstants are passed into Subs or
Functions! Sometimes this can overlap the first stack, so some attention will be needed!

With some devices like the 8515, external memory may be added. However, because the XRAM can only start after
the SRAM, which is at &H0260, the lower memory locations of the XRAM will not be used.

Most AVR chips have internal EEPROM on board. This EEPROM can be used to store and retrieve infrequently
used data.

With FastAVR, access to this space is easy using WriteEE and ReadEE statements!
Note that each address can only be written a maximum of 100,000 times!

Numeric and String Constants do not use any SRAM, they are in code (flash)!

2.17. Assembler Programming

Assembler code may be added at any time. However, assembler programming should not be necessary since
FastAVR will probably generate smaller code than can be done in assembler!
Also, the generated assembler file can be edited and recompiled to fine tune the whole system!

All variables are reachable from assembiler, like:
SAsm

sts tip,zl

1lds r24,tip
SEndAsm

tip is a global variable!

FastAVR Basic compiler Manual

3. FastAVR IDE

3.1. Editor

The Editor is the main part of the IDE. This is where your program appears under your fingers! Here is where you
spend most of your development time! So the editor should be something very useful and friendly.

Some features and benefits:

e very fast syntax highlighting

¢ line numbers can be in decimal, hex or binary format

e bookmarks, Ctrl-F2 for mark, F2 to switch between bookmarks

e horizontal and/or vertical split bars of same file (drag from left-down and/or upper-right scroll bars),

& Open Document - C:\Fast\Molor.bas !E‘E
ool 'Nr,wmfNHNHNH;HH 0zl Ince h -]
002 |'/¢7 FAST Basic Compile N2z If n=51 Then
o3 | ' A Name of Your projec 0z3 n=2 =
OO0\ ' SAAFFEEFF IR TR TR fF 024 End If
P |005 (sdevice= 2313 L 025 Waic 2

O0& |$scack = 32 '3 026

007 |sclock = T.3728 ''u 0z7 'n=pind & sh3f

008 |ftimerlsTimer, Frescale=l e Select Case n

008 | Source=ln 'b nza Caze 0

gL 230

0Ll Dim n Az Byte, i Az Byte 031 Caze 2

- = -

. Eri Dim bdiG) A=z Bvre _PIJ . 032 Reload=:h7000 _PIJ
o (005 |sdevice= 2313 " ua) Q08 |stimerl=Timer, Prescale=l -]

006 |sstack = 32 L] 003 |5 5ource=0n ' basic :m_l

007 |sclock = 7.3728 'y oLo

008 |5 timerl=Timer, Frescale=]l 011 |im n A= Byte, i As Eyte

Q08 | 5 Source=0n ‘b 012 (Dim bd(€) ks Eyte

010 013 |Dim Reload As Word

01l |Dim n As Byre, i As Byte 014

012 |Dim bd{6) As Byte 015 |Declare Interrupt OwEL()

013 |Dim Reload Az Word 016 |Declare Sub Init()

L4 017

015 |Declare Interrupt OwEl() P [OLE [Inici)

QL6 Declare Sub Init() 019 (n=19

- b2

. Elr? LI_I . 020 /Do _I'I_I

o editor properties window with right-click on editor screen:

FastAVR Basic compiler Manual

Window Properties Ed

Color/Font | Language/Tabs | Keyboard Misc |

™ Bmooth scioling ¥ Color synta highlighting
¥ Show left matgin ¥ Show horizontal scrallar
¥ Line tooltips on scioll ¥ Show vertical sciollbas

W Allow drag and drop I+ Allows hosizontal splitting

F Allow column selection [V Allow vestical spitting
™ Corifire caret bo text

Line numbenng ———— Max undoable actions:
Shyle: IDecimaI = 0 Unfimited
Stagt at: |1 € Limited to: |

fully configurable keyboard commands

double click on word to select and enable Find or Replace

Find and Replace commands inside right-click on editor screen
automatic reload of last edited or compiled file

and many more...

FastAVR Basic compiler Manual

3.2

IDE

Integrated Development Environment is your working desktop!

With easy-to-use menus, files and windows can be easily manipulated.
Everything needed during the development process can be found in the ToolBar.
Buttons are self explanatory and very easy to use.

& Open Document - C:\AtmeN\Saturnus. bas

&y 0pen Document - C:\AVR\RadioNew\RFcmd. bas

nan

T ey A e 0 0 B e S A A 0 T i e

| R FastdVE Basic Comwpiler for AVR by MICRODEAIGH Fif
- R RFcmd.bas - RF conmand program i

YRR E R R F R R F i d i F i b i iR iR R F b A F R T i EE R AL i Fd R P i i F i i i i fiiriyd
fDevice= mlé ' uszed dewvice
fitack = 48 ' stack size

' 4Clock = 11.0592

. 5Timer0=Tiner, Prescale=5

1 $Timerl=Timer, Prescale=256, Compare=DisConnect, Clear
] §Baud = 115200

§Def BxEn=FORTC.Z

> 3Def TxEn-PORTC.3
3 3Def RFTXD=FPORTC.4
sDef RFRXD=PORTC. 5

fhef TxD=PORTD.3
'5Def opto=PORTA.7

' 's§Def ir=PORTA.6

B e e D R R
| Declare Interrupt Intl()

Declare Interrupt Oclif)

- Declare Sub Init()

Declare 3ub Stateli)
Declare 3ub SendByte(db As Ewte]
Declare 3ub SendPacket(Plen Az Byte)

Timalara ol @eedTamn fmmarn B0 An Deeds b

The main screen is used for editing files. More than one file can be open at once.
At the bottom is the Compiler status frame where compiled results can be viewed!

FastAUR

FastAVR Basic compiler Manual

3.3. Keyboard Commands

Command Keystroke

Compile F5

Run LCD char gen F4

Run Programmer F6

Run Terminal Emulator F9

Run AVR Calculator F11

BookmarkNext F2

BookmarkPrev Shift + F2
BookmarkToggle Control + F2
CharLeft Left

CharLeftExtend Shift + Left
CharRight Right
CharRightExtend Shift + Right

Copy Control + C

Copy Control + Insert
Cut Shift + Delete

Cut Control + X
CutSelection Control + Alt + W
Delete Delete

DeleteBack Backspace
DocumentEnd Control + End
DocumentEndExtend Control + Shift + End
DocumentStart Control + Home
DocumentStartExtend Control + Shift + Home
Find Alt + F3

Find Control + F
FindNext F3

FindNextWord Control + F3
FindPrev Shift + F3
FindPrevWord Control + Shift + F3
FindReplace Control + Alt + F3
GoToLine Control + G
GoToMatchBrace Control +]

Home Home

HomeExtend Shift + Home
IndentSelection Tab

LineCut Control + Y
LineDown Down

LineDowNextend Shift + Down
LineEnd End

LineEndExtend Shift + End
LineOpenAbove Control + Shift + N
LineUp Up

LineUpExtend Shift + Up
LowercaseSelection Control + U
PageDown Next

PageDowNextend Shift + Next

PageUp PRIOR

PageUpExtend Shift + Prior

Paste Control + V

Paste Shift + Insert
Properties Alt + Enter
RecordMacro Control + Shift + R
Redo F8

SelectLine Control + Alt + F8
SelectSwapAnchor Control + Shift + X
SentenceCut Control + Alt + K
Sentenceleft Control + Alt + Left

FastAVR Basic compiler Manual

SentenceRight Control + Alt + Right
SetRepeatCount Control + R
TabifySelection Control + Shift + T
ToggleOvertype Insert
ToggleWhitespaceDisp Control + Alt + T

Undo Control + Z

Undo Alt + Backspace
UnindentSelection Shift + Tab
UntabifySelection Control + Shift + Space
UppercaseSelection Control + Shift + U
WindowScrollDown Control + Up
WindowScrollLeft Control + PageUp
WindowScrollRight Control + PageDown
WindowScrollUp Control + Down
WordDeleteToEnd Control + Delete
WordDeleteToStart Control + Backspace
WordLeft Control + Left
WordLeftExtend Control + Shift + Left
WordRight Control + Right
WordRightExtend Control + Shift + Right
3.4. Mouse Use

Mouse Action:

Result:

L-Button click over text

R-Button click

L-Button down over selection, and drag

Ctrl + L-Button down over selection, and drag
L-Button click over left margin
L-Button click over left margin,
Alt + L-Button down, and drag
L-Button double click over text
Spin IntelliMouse mouse wheel
Single click IntelliMouse mouse wheel
Double click IntelliMouse mouse wheel
Click and drag splitter bar

Double click splitter bar

and drag

Changes the caret position

Displays the edit menu

Moves text

Copies text

Selects line

Selects multiple lines

Select columns of text

Select word under cursor

Scroll the window vertically

Select the word under the cursor
Select the line under the cursor
Split the window into multiple views
Split the window in half into multiple

views

FastAVR Basic compiler Manual

4.1. AVR Studio

You can Debug or Simulate your program at assembler level using Atmel's free AVR Studio.
For this purpose please load Obj file to AVR Studiol!

®
AVR
Studio 3.2
sonanse e = ATMEL

When pressing the DEBUG button from the main toolbar for the first time you will be asked to locate the AVR
Studio software!

Any further click of the Debug button will run AVR Studio!

AVRStudio3 can be downloaded for simulating and/or debugging the assembler output file!

4.2. LCD Character Generator

The alphanumeric LCD can define up to eight special characters numbered from 0 to 7.

(il LD Characters desigre

First design your character by clicking on LCD pixel blocks (left click- set pixel, right click- reset pixel). By pressing

OK, the LCD designer will insert a special code at the current cursor position in the active document window.
DeflLcdChar 0, &hOA, &h04, &hOE, &hll, &h10, &hl10, &hOF, &h00

Zero after DefLcdChar is the Character number and must be edited in subsequent character definitions!

FastAVR Basic compiler Manual

The new LCD character can be displayed on the LCD using the statement:

Lcd Chr (n) 'where n is the character number from 0 to 7

4.3. Terminal Emulator

When testing out the UART (hardware or software type), you may wish to monitor the output from your hardware.
Terminal emulator will capture any ASCII output sent using the Print statement.

While typing in Terminal Emulator, all characters are sent to your hardware and can be captured using Input.
ComPort must first be configured for the correct Port (Com1, Com2), speed (9600,....) and other parameters! The
Terminal Emulator port must be opened by clicking on the RED circle!

1 FastaVE Terminal

File CommPort

L0G 0 o

terminal

Status; Settings: 600,081 00:00:16

FastAVR Basic compiler Manual

4.4. AVR Calculator

AVR calculator allows quick calculations for timer reload values based on the crystal used, needed time and

prescale factor!

Calculated results are for Timer Overflow and for OutputCompare!

23 FastAVR Calculator

%]

Used Crystal [MHz] |EREE -

Meeded Time [us] [1000

Prescale |1
Timerd Timers
TCHT= == OCRx
Timerl Timer3
TENT:H B2 TonTaL

Actual time [us] 1000.027

OCRxAH 1c OCR#AL CD

El

FastAVR Basic compiler Manual

4.5. Programmer

FastAVR runs Atmel's free ISP programming software installed on your PC (or any other programming software).
Programming can be accomplished using a very simple programming dongle connected to your Parallel port. Here

is the schematic to build one:

1l

//g\ | ISP Programmer Dongle
o——F
Dii 1744142
ol ¢ Wl MHOCidd Rl =
o I L retdnee | N
o !
o I LI Y FE |]
o3 Iluuu
o—07> 18 i Lava v 18
o [] =
L] 4 1
o—— 14T aad I
o T F lave v |18
ol = TR
il 6 15 EET
o —— 145 24l L
& T I (PO B T
T
o 2 H lAd AT I
ol 1
o & L laevt ava |12
ol
o Ti LI Y]
‘\E\:
DES e

5| CODO0OO0 |8

When pressing the PROGRAM button from the main tool bar the first time you will be asked to locate Your prefered

programming software!

Any further click on the Program button will run the ISP programmer!

In addition, You can enter special Command line parameters if You are using such a Programmer!

You can download ISP Programmer from Atmels www !

FastAVR Basic compiler Manual

5. AVR fundaments

The best reading about AVR core is AVR data documents at
http://www.atmel.com/dyn/products/datasheets.asp?family id=607.

FastAVR Basic compiler Manual

6. FastAVR KeyWords

6.1. Meta - Statements

Meta-statements direct the compiler. Most are to configure compiler options. Some cue the compiler about the
intended program actions, such as interrupt handling. Thus, some directives cause code from predefined libraries to
be included.

Meta-statement keywords begin with "$".

6.1.1. Compiler directives
6.1.1.1. $Angles
Description:

Defines how Angles will be threated in Trigonometric functions.

Syntax:

SAngles = Degrees|Radians

Remarks:
Default is Radians.

Example:
SAngles=Degrees 'Angles are in Deegrres

Dim f1 As Float

£1=5in(30) '£1=0.5000000

Related topics:
Sin

Cos

Tan

Asin

Acos

Atan

FastAVR Basic compiler Manual

6.1.1.2. $Asm

Description:
Starts an assembler program subroutine.

Syntax:
SAsm

Remarks:
This allows to use inline assembly code.
Always use $Asm with $EndAsm at the end of a block.

Example:
SAsm
1di z1l,0x65
st c,zl
SEndAsm

6.1.1.3. $Include

Description:
Instructs the compiler to include a Basic source file from disk at that position.

Syntax:
$Include "Path\BasDoc.bas"

Remarks:
The compiler continues with the next statement in the original source file when it encounters the end of the included
file. The result is the same as if the contents of the included file were physically present in the original source file.

Example:

$SInclude "C:\FastAVR\Init.bas"
$SInclude "C:\FastAVR\Font.bas"
6.1.1.4. $includeAsm
Description:

Instructs the compiler to include a ASM source file from disk at the position.

Syntax:
$IncludeAsm "Path\Utils.asm"

Remarks:
The compiler just add included file in to generated ASM output, so only Assembler will compile it.

Example:
SInclude "C:\FastAVR\Init.asm"

FastAVR Basic compiler Manual

6.1.1.5. $Source

Description:
Tells the compiler to add Basic statements as comments in the ASM file for easy debugging.

Syntax:
SSource=0N|OFF

Could be omitted, default is ON.

6.1.2. Processor Configuration
6.1.2.1. $Baud
Description:

Defines the UART (or second UART) baud rate and optional setings. It is similar to bits per second, but includes
other non-data bits (start, stop, mark) which add overhead.

Syntax:
SBaud = const [, Parity, DataBits, StopBits]
SBaud2 = const [, Parity, DataBits, StopBits] ' for second UART

INPORTANT! If user will use UART in Default mode (No Parity, 8 data bits, 1 Stop bit) use short mode:
$Baud = 9600

Specifying Parity,, will add extra routines for handling this extra features!

Remarks:

const is the baud rate number with standard values:

1200, 2400, 4800, 9600, 19200, 38400, 56600,76800,115200
Higher Baud rates are possible on new Mega devices!

Parity N, O, E,Mor S
DataBits 5, 6,7, 8 or 9
StopBits 1 or 2 (in case of 9 DataBits, must be only 1 StopBit)

& See the AVR datasheets for valid UART settings for the target microprocessor

Example:
SBaud = 9600
$Baud2 = 9600

Related topics:
Baud

$Clock

FastAVR Basic compiler Manual

6.1.2.2. $Clock

Description:

Defines for the compiler's use the frequency of the microprocessor's crystal input. This is used to calculate
compiler-generated constants in the output of a compilation. These constants are used at run time to set the serial
port(s) baud rates and for built-in functions which delay by looping.

Syntax:
SClock=const

Remarks:
const is the frequency value of crystal used. (In MHz)

Check for max working frequency for specific microcontroler!

i If the value given in the $Clock meta-statement is not the actually implemented microprocessor
frequency, the serial port baud rate will be in error. The baud rate must be within a few percent in order for
successful and reliable communications over time and temperature variations. Also, the software delay
loops and hardware timers will be in error.

Example:
SClock = 3.6864 'Our crystal is 3.6864MHz

Related topics:

$Baud
Baud

6.1.2.3. $Device

Description:
Declares which microprocessor product is the target for the generated code.

Syntax:
SDevice=type [, Xram, FirstAdr, XramLength]

Remarks:
type refers to a particular microprocessor product.
The other parameters are optional and define external RAM if present, for those chips which support such.

Example:
Shevice= 4433

SDevice= 8515, Xram, 0, 32k
Shevice= ATmegalb
Shevice= megalb

SDevice= ml6

Shevice= tinyl3

FastAVR Basic compiler Manual

6.1.2.4. $Stack

Description:

Defines the stack size needed for the program based on the program's design, the needs of the run-time libraries
created by the compiler, and the interrupt arrangements. The stack space is created by initialization code generated
by the compiler.

The stack must include space for the following:

The worst-case nesting of calls to SUBs and FUNCTIONS (return addresses)
The worst-case nesting of parameters passed to FUNCTIONS
o Passed parameters are stored on stack frames, based on their sizes
e The worst-case nesting of the above with their local variables
o Thatis, the DIMs inside SUB or FUNCTION or INTERRUPT
e Plus space for interrupt procedures and saving of registers at interrupt

i The necessary stack size is often underestimated by the programmer. This error causes all kinds and
sorts of non-obvious run-time program failures under statistical probabilities of events. For microprocessors
with small memories, estimating optimal stack size is a true challenge for the software engineer.

Syntax:

SStack=num

Remarks:
num is the number of memory bytes reserved for stack space.

Example:
$Stack = 32 'stack will be 32 bytes deep

6.1.3. 1/0 Configuration
6.1.3.1. $Def
Description:

Gives a symbolic name to a particular AVR 1/O port and a bit position within that port. This enables user-defined
names based on the purpose of the I/O pins of the microprocessor in any given application.

Syntax:
SDef name=PORT.n

Remarks:

name is a valid symbol name for the compiler.

PORT is one of the predefined names of the microprocessor 1/0 port such as PORTA or PORTB
n one digit between 0 and 7 depicting the bit number in the port

Example:
$Def Led=PORT.1

Set Led

FastAVR Basic compiler Manual

6.1.3.2. $1Wire

Description:
Tells the compiler which PORT.pin the 1wire bus is connected to.

Syntax:
S1Wire=Port.pin [, PORT.pinl, PORT.pin2, ...]

Remarks:
PORT.pin is the name of the physical pin.

You can have more than one 1Wire bus. Each additional Port.pin has its own index, first is 0!
Of course, You can connect also more 1Wire devices on each bus.

Example:
S1Wire=PORTD.2 'lWire bus is connected to PortD.2

DS1EX0

'I'u.-'l.ir}'l*nl

.”F————————-GND
DaQ
5%

Related topics:
1wreset
1wread
1wwrite

6.1.3.3. $DTMF

Description:
Reminds wher is OC1 output for DTMF signal generation.

Syntax:
SDTMF = PORT.pin, duration

Remarks:

Port must be Port where OC1 pin is located.
pinis a OC1 pin number.

duration in ms, maxis 255!

Example:
DTMF

FastAVR Basic compiler Manual

6.1.3.4. $I2C

Description:
Defines the 12C bus pins connections for software single master configuration.

Hardware supported 12C on new Mega devices is not yet supported!

Syntax:
$12C SDA=PORT.pin, SCL=PORT.pin

Remarks:
Tells the compiler which port pins SDA and SCL are connected to.

Dont forget pulup resistors on SDA and SCL (4k7 - 10k)!

Example:
$I2C SDA=PORTD.5, SCL=PORTD.6 'Defines I2C port pins

Related topics:
[2CStart
[2CWrite
[2CRead
[2CStop

6.1.3.5. $Key

Description:
Defines the user defined keyboard matrix.

Syntax:
SKey Rows=PORT &hHexNum [, Cols=PORT &hHexNum] [, Hi] [, deb]

Remarks:

AVRPort is the name of the physical port.

&hHexNum is a two digit hex number representing keyboard wires
Hi this makes keys Active High (not for matrix organized keys)
deb is the debounce time in mseconds. Default is 20ms.

Example1:
'Defines four keys keyboard (keys in line)
SKey Rows=PORTD &h78

% lwee cppps T
T1-FD5 2 T
L &= o g o Ta
IHT1-FD3 i T

W owp meen2 —2

THD-FD]1 —

EXD-PDO ——

FastAVR Basic compiler Manual

Example2:
'Defines matrix 5x4 Kbd connection
'debounce time is set to 50ms

SKey Rows=PORTB &hfsg,

20

10

oL

EES

GHD

¥l

n

ICE-PD
T1-BD:S
TO-ETv4

IHT1-FD3

THTO-PD2

THD-PL1

EXD-PD0

SCE-PET
MISO0-PRA
MOSI-PRAS

PB4

OC1-PEZ

PE2

11

(keys in matrix)

Cols=PORTD &h74,

ATMI-PEl ——

ATHO-PEO

2313

Example3:

'Defines three keys keyboard

INTO

$Key Rows=PORTB &hel

FH

OC1-FBY

PB4 [—

MOSE-PBE
MISO-PBEG

SCE-FBT

EXD-PDD
TXD-FDN

INTO-PDZ

WoC

[# & @

Related topics:

Key()

9
o)

— <]
4
T >
AT TArs
e 1A A
y A A
s 1A A
NN

50

(keys in line),

every keypress generates also External interrupt

FastAVR Basic compiler Manual

6.1.3.6. $LeadChar

Description:
Defines Leading Char for Print, Lcd, Tled, Gled and Str(). All this outputs becomes RIGHT justified! Optionaly
defines also Format.

Syntax:

SLeadChar="single string constant" [, Format (Int,Frac)]

Remarks:

"single string constant" becomes Leading Char
Int Number of Integer numbers or Scientific

Frac Number of Fractal numbers

Note: LeadChar could be one for the whole project! Statement Format reserves two bytes of SRAM as system
variables!

For Format statements read Format.

Example:

n=>5

SLeadChar="0", Format (3,1) 'lead char is "0", always will be three places left of decimal
point and one on the right

Lcd n 'output: 000.5

n=54321

Format (3, 1) 'lead char is "0", always will be three places left of decimal
point and one on the right

Lcd n 'output: 432.1

n=>5
Format (2, 0) 'lead char is "0", always will be two places and no decimal point
Lcd n 'output: 05

Related topics:
Format

6.1.3.7. $Lcd

Description:
Tells the compiler which pins the alphanumeric LCD is connected to.

Syntax:
For 4bit port connection:
SLcd=PORT.pin, rs=PORT.pin, en=PORT.pin, cols, rows

RW pin MUST be wired to GND!

For 8bit BUS connection:
SLcd=Adr, rs=AdrRS, cols, rows

ATTENTION! Configuration for STK-200 and STK-300 in bus mode:
SLcd=&h8000, rs=&hc000, cols, rows
A15 to generate EN, A14 for RS

FastAVR Basic compiler Manual

Remarks:

Port is the name of the physical port. Any bidirectional or output port can be used!
pin is the name of the physical pin at which Lcd's D4 starts.

Adr is the Hex Address of the LCD connected in BUS mode.

AdrRS is the Hex Address of the LCD RS signal connected in BUS mode.

cols are the number of columns of the LCD.

rows are the number of rows of the LCD.

ATTENTION! The shortest code wil generate $Lcd=PORTx .0 or PORTx .4, upper or lower nible!
Lcd pin RW MUST be soldered to GND!

Example:
$Lcd=PORTD.4, rs=PORTB.0, en=PORTB.1, 16, 2 'LCD Defined as 16x2

44334 AlphaMumeric LCD

ADS-PCS
ADd-PC4
ADS-PC3
ADZ-PC1
AD-PC1
ADO-FCO

:1';;
(I
-
]
c
C

E|r|t:|‘£
| |
|
| |

p []
[

pe [][]
-
[]

SCE-PRS
MISO-FBA
MOSI-FE3
55-PB2
OC1-FBL
ICP-FBO

-
'
14
13
1
]
]
2
&
I
6
5
4
3
i
1

|'-"|
=
|

o Voe

AIN1-PDT
ATNG-FIDNG

T1-PDS

TO-PDd
INT1-FD3
INTO-PLI2
THD-FD1
RXD-FDO

||||- s s = =

[TXD
TRND |

Related topics:
LCD

Locate

Display

Cursor

InitLcd

6.1.3.8. $PcKey

Description:
Configures AT Keyboard connection

Syntax:
SPcKey data=PORT.pinl, clock=PORT.pin2 [, NoInit]

Remarks:
data line for PcKey is connected to AVRport.pin1. Any bidirectional PORT.pin can be used!
NoInit option for skip Initialize PcKeyboard (usefull if BarCode reader is attached instead of PcKeyboard).

clock line for PcKey is connected to AVRport.pin2

FastAVR Basic compiler Manual

Example:

PcKey()

Related topics:
PcKeySend()

6.1.3.9. $RC5

Description:
Configures Phillips RC5 IR receiving.

Syntax:
SRC5 = PORT.pin

Remarks:
Port is the name of the physical port.

pin is a pin number where IR receiver is connected.

Example:
RC5

Related topics:
RC5

6.1.3.10. $ShiftOut

Description:

Tells the compiler the name of the AVR pin for ShiftOut or Shiftin

Syntax:

$Shiftout Data=PORT.pin, Clock=PORT.pin, Msb [Lsb]

Remarks:
Port is the name of the physical port.

Msb for Most significant bit first, Lsb for Less significant bit first

Routines works for both Clock polarityes!

Very usefull for expanding IO lines using shift registers!

Example:
SShiftout Data=PORTB.0, Clock=PORTB.1, 1

Related topics:
ShiftOut
Shiftin

FastAVR Basic compiler Manual

6.1.3.11. $Sound

Description:
Configures AVR pin for Sound output.

Syntax:
$Sound = PORT.pin

Remarks:
AVRPort is the name of the physical port.
pin is a pin number where (buffered speaker or buzzer) is connected.

Example:

SSound = PORTD.?2 ' this pin for sound output
Related topics:

Sound

6.1.3.12. $Spi

Description:
Defines the SPI bus parameters.

Syntax:
SSpi num, Lsb|Msb, Master|Slave, Hi|Low, Hi|Low

Remarks:

num is the Clock division number for setting speed: 4, 16, 64, 128
Lsb or Msb tells which bit will be shifted out first.

First Hi or Low for Clock polarity (see Atmel's data)

Second Hi or Low for Clock Phase (see Atmel's data)

Note: During SPI initialization as Master Clk and MOSI are set to be output. SS must be held high!

Example:
$Spi 128, Lsb, Master, Hi, Low

Related topics:
SPlIn
SPI10ut

6.1.3.13. $Timer

Description:
Defines the mode for Timers.

STimer(0=Timer [, Prescale=const, Async, Compare= Set|Reset|Toggle|DisConnected,
Clear]

STimerO=Counter, Rising|Falling [, Compare= Set|Reset|Toggle|DisConnected, Clear]
STimer0=PWM, 8]9|10, Normal|Inverted|DisConnected [,Prescale=8]

STimerl=Timer [, Prescale=const,

FastAVR Basic compiler Manual

Compare=Set |Reset |Toggle|DisConnected, CompareA=Set |Reset |Toggle|DisConnected,
CompareB=Set |Reset |Toggle|DisConnected, Clear, Capture=Rising|Falling, NoiseCancel]

STimerl=Counter, Rising|Falling [,Compare=Set|Reset|Toggle|DisConnected,
CompareA=Set |Reset |Toggle|DisConnected, CompareB=Set |Reset|Toggle|DisConnected,
Clear, Capture =Rising|Falling, NoiseCancel]

STimerl1l=PWM, 89|10, PwmA|PwmB=Normal|Inverted|DisConnected [, Prescale=8]

STimer2=Timer [, Prescale=8, Async, Compare=Set |Reset|Toggle|DisConnected, Clear]
STimer2=Counter, Rising|Falling [, Compare= Set|Reset|Toggle|DisConnected, Clear]
STimer2=PWM, 8]9|10, Normal|Inverted|DisConnected [, Prescale=8]

STimer3=Timer [, Prescale=const,
Compare=Set |Reset |Toggle|DisConnected, CompareA=Set |[Reset |Toggle|DisConnected,
CompareB=Set |Reset |Toggle|DisConnected, Clear, Capture=Rising|Falling, NoiseCancel]

STimer3=Counter, Rising|Falling [,Compare=Set|Reset|Toggle|DisConnected,
CompareA=Set |Reset |Toggle|DisConnected, CompareB=Set |Reset|Toggle|DisConnected,
Clear, Capture =Rising|Falling, NoiseCancel]

STimer3=PWM, 89|10, PwmA|PwmB=Normal|Inverted|DisConnected [, Prescale=8]

Remarks:

const can be 1, 8, 64, 256, 1024, for Timer0 and Timer2 also 32 and 128 (not for all devices!)

Normal Timers are clocked with Non prescaled Clock in PWM and Compare modes. If the user wishes to use lower
frequencies just combine statements, such as:

STimerO=Timer, Prescale=256 ' Clock will be divided by 256
STimer0=PWM, 8, Normal|Inverted ' PWM will now use prescaled clock

In PWM mode, Use special variables: Pwm0, PwmlA, PwmlB, Pwm2.
In OutCompare mode, Use special variables: Compare0, Compareld, ComparelB, Compare?.

See the manual for Timer usage!
Example:

STimerO0=Timer, Prescale=1
$STimerl1=PWM, 8, PwmA=Inverted

6.1.3.14. $WatchDog

Description:
Defines the WatchDog time constant.

Syntax:
SWatchDog=const

Remarks:
const is the aprox. time in ms (at Vcc=5V) after which will WatchDog mechanism reset AVR device (16, 32, 64, 128,
256, 512, 1024, 2048).

Example:
SWatchDog = 2048 'About two seconds

FastAVR Basic compiler Manual

Related topics:
Start

Stop
Reset

6.2. HD61202, KS0108B and SEP1520 Graphic LCD support
6.2.1. General

Graphic LCD (Hitachi HD61202 and Samsung KS1080B) usage.

Most commonly used graphic LCD has 128 x 64 pixels and it is produced by many manufacturers like Seiko
(G1216), Hantronix (HDM64GS12), Samsung, WM-G1206,....

Pages are organized in rows (Lines), each being 8 pixels high. The number of Lines depends on the resolution of
the particular display. For example, a 128 x 64 Icd would have 8 Lines, while a 128 x 32 Icd would only have 4
Lines. Some statements are Line oriented, not pixel. For instance, text can be written only on Lines, not in between.

xﬁu X=8 X=20 X=38 X=112?
= |1 |] ;
Y=3 = LineH({20,3,38) ,1 Li“e 0 i
1 T =
HiE i11(20,1,25,2), &shff i
F r r r f
Y=13 I Bl Line 1
= = = L L T[]]]
i = g i _
: e P ! Line 2
H —— - i
] H NN]
= = LI 111 = -
Y=28 = 8 Linev(8,13,28),1 8 rof Line 3
=I-I-IIIIIIII=
Y=34 = mPset(8,34),1 ImgSet (38,2) , Imgl .
Line 4
I |=|"."+ GLod(20,5) , "Text Line 5
I "o ™ " "m"
Pset(8,52),0 Line 6
Line 7

Most displays using the HD61202 and KS0108B chipset are separated into two banks. Each bank is addressed by
the use of two chip select lines (CS1 and CS2). Therefore, a 128 x 64 display would be treated like two (64 x 64)
displays.

For more information on Lcd Graphic displays please refer to the datasheets.

Support for SEP1520 is done for popular 122 x 32 pix module format. Only $GCtrl is deeferente!

FastAVR Basic compiler Manual

6.2.2. $GLCD, $GCtrl

Description:
Tells the compiler details about Graphic LCD connections.

Syntax:
SGLCD HD61202, Data=AVRPort, Ctrl=AVRPort, NumOfXpix, NumOf¥pix, i
$GCtrl EN=4, WR=3, DI=2, CS1=0, CS2=1

For SEP1520:
$GCtrl AO0=4, RW=3, E1=0, E2=1

Remarks:

HD61202 or KS0108B is the graphic controller chip used

Data AVRPort where data bus is connected

ctrl AVRPort where control lines are connected

AVRPort any valid AVRPort. Any bidirectional port can be used!

NumOfXpix how many Pixels LCD has on X

NumOfYpix how many Pixels LCD has on Y

i type of init routine, could be 1,2 or 3

EN, WR, DI, cs1, cs2 valid Control line names for HD61202 and KS0108B
A0, RW, E1, E2 valid Control line names for SEP1520D61202

Note: Because of differences in Graphic Lcds, no provision is made for a hardware reset.
You may, however, assign any valid AvrPort pin that is available or use an appropriate RC setup for the LCD
module reset. Please refer to the datasheet or manual for the specific graphic LCD module being used.

Control lines can be declared in any order!

Example:
SGLCD HD61202, Data=PORTB, Ctrl=PORTD, 128, 64, 1
$Gectrl EN=4, WR=3, DI=2, CS1=0, CS2=1

'EN is connected to PORTD.4, WR to PORTD.3...

6.2.3. Fill

Description:
Fills specified area with a byte pattern.

Syntax:
Fill (varX, wvarLl, varXl, varLl), Pat

Remarks:

varX LeftMost X coordinate of area, normally between 0 and 126
varL TopMost Line of area, normally between 0 and 6

varX1l RightMost X coordinate of area, normally between 1 and 127
varLl BottomMost Line of area, normally between 1 and 7

Pat Byte the area will be filled with

varX1l must be greater than varx and varLl must be greater than varL.

FastAVR Basic compiler Manual

Y coordinates are in Lines not in Pixels! Also suitable for clearing a specific area.

Example:
Fill (15, 1, 60, 4), &haa

Related Topics:
Inverse
GCls

6.2.4. FontSet

Description:
Selects soft Font.

Syntax:
FontSet NameOfFontTable

Remarks:

Specified area will be filled with &haa

NameOfFontTable Table in Flash that contains individual letter definitions.

NameOfFontTable must be declared first and added into source ($Included)!
Fonts can be edited with the FastLCD utility and saved in bas format ready to include in source!
Selected Font is active until another Font is selected with FontSet.

Example:

Dim FOHD As Flash Byte
Dim F1HD As Flash Byte
Dim n As Byte

Dim s As String*20

n=15

s="Graphic LCD"
FontSet F1HD
GLcd (15, 0), n
GLcd (15, 7), s

FontSet FOHD
GLcd (15, 1), "HD61202"

' Selects F1
' Writes n with F1
' Writes w with F1

' Selects FO
' Writes txt with FO

$Included "C:\FastAVR\FOHD.bas" ' Here is 6x8 font definition
$Included "C:\FastAVR\F1HD.bas" ' Here is 8x8 font definition
Related Topics:

GLcd

FastAVR Basic compiler Manual

6.2.5. Gcls

Description:
Clears the Graphic LCD

Syntax:
GCls

Example:
GCls ' Graphic LCD is now cleared

6.2.6. Glcd

Description:

Writes text on graphic LCD using previously specified soft Font.

Syntax:
GLcd (varX, varP), var

Remarks:

varX Starting X coordinate, normally between 0 and 127
varP Line to write in, between 0 and 7

var num, string, string constant or hex to write

Y coordinates are in Lines not in Pixels!
Font MUST be set (FontSet)prior to using G1cd!

If You wish to show just a few words, maybe ImgSet is better (shorter) solution (word is made as an Immage)!

If sSLeadChar is defined then result will be right justified with Leading Chars as defined. Also, if Format () is

defined then optional decimal point will be inserted!

Example:

GLcd (15, 0), n

GLcd (15, 1), s

GLcd (15, 2), "This is HD61202"
GLecd (15, 3), Chr(61)

GLcd (15, 4), Hex(61)

Related Topics:
FontSet

6.2.7. Glcdinit

Description:
Initializes the Graphic LCD display

Syntax:
GLcdInit

Writes num variable on upper Line
Writes string var on second Line
Writes string on third Line

Writes letter A on 4.
Writes Hex string on 5. Line

FastAVR Basic compiler Manual

Example:
GLcdInit

Remarks:

SGLCD and $GCtrl must be setup prior to using GLcdInit.

At initial power on or anytime the graphic LCD is powered down, GL.cdinit should be called to initialize the LCD
before using any graphic statements.

Some LCDs has theirs own internal RESET, for others user MUST generate RESET (active LOW) before Calling
GLcdInit!

6.2.8. GRead

Description:
Reads a byte from the graphic LCD at selected X and Line.

Syntax:
Var = GRead (varX, varl)

Remarks:

varX X coordinate, normally between 0 and 127
varL Line, between 0 and 7

var is assigned the value read

This is the graphic controllers native Read function.
Y coordinates are in Lines not in Pixels!

Example:
n = GRead (17, 2) ' Data from x=17 on Line 2 will be Read into n.

Related Topics:

Gwrite

6.2.9. GWrite

Description:
Writes a byte at selected X and Line.

Syntax:

GWrite (varX, varl), var

Remarks:

varX X coordinate, normally between 0 and 127
varL Line, between 0 and 7

var to be written to desired position.

This is the graphic controllers native Write function.
Y coordinates are in Lines not in Pixels!

FastAVR Basic compiler Manual

Example:
GWrite (17, 2), 15 ' Four pixels will be written to x=17 on the Line 2.

Related Topics:
GRead

6.2.10. ImgSet

Description:
Displays an Image or a part of ImageArray on the graphic LCD at selected X and Line.

Syntax:
ImgSet (varX, varP), NameOfImgTable

Or, if You wat to display just a part of an ImageArray:
(Image must be saved as ImageArray, when edited using FastLCD utility!)

ImgSet (varX, varP, var), NameOfImgTable

Remarks:

varX X coordinate, normally between 0 and 127

varL Line, between 0 and 7

var which part of Image, (index in ImageArray)
NameOfImgTable Table in Flash that contains the bit image.

Y coordinates are in Lines not in Pixels!

NameOfImgTable must be declared first and added into source ($Included)!

Images can be edited with FastLCD image editor which can save Images in bas format.
The saved image is then ready to be included in the source program!

Example:
Dim Img0 As Flash Byte
Dim Imgl As Flash Byte

ImgSet (15, 2), Imgl ' Image Imgl will be copied to location
$Included "C:\FastAVR\ImgO.bas" ' Img0 bit image definition
$Included "C:\FastAVR\Imgl.bas" ' Imgl bit image definition

Second syntax:
Using ImageArray, a large letters, Icons or Sprites can be displayed, all saved in a single Image!
Any part of this Image is accessable by its index, yeaa - this means animations!

Example:

Dim Sclkl616HD As Flash Byte

ImgSet (15, 2, 1), Sclkl616HD ' SandClock with index 1
$Included "C:\FastAVR\Sclkl61l6HD.bas" ' SandClock definition
Related Topics:

GLcd

FastAVR Basic compiler Manual

6.2.11. Inverse

Description:
Inverses specified area on the screen.

Syntax:

Inverse (varX, varL, varXl, varLl)

Remarks:

varX LeftMost X coordinate of area, normally between 0 and 126
varL TopMost Line of area, normally between 0 and 7

varX1l RightMost X coordinate of area, normally between 1 and 127
varLl BottomMost Line of area, normally between 0 and 7

varX1l must be greater than varX and varLl must be greater than varL.
Y coordinates are in Lines not in Pixels!

Example:
Inverse (15, 1, 60, 4) ' Specified area will be Inversed

Related Topics:
Fill

6.2.12. LineH

Description:
Draws or Clears a Horizontal Line.

Syntax:
LineH (varX, varY, varXl), 0|1

Remarks:

varX X coordinate of LeftMost pixel in Line, normally between 0 and 126
varY Y coordinate of Line, normally between 0 and 63

varX1l X coordinate of RightMost pixel in Line, normally between 1 and 127
011 O will Clear Line, 1 will Draw Line

varX1l must be greater than varx.

Example:

LineH (15, 20, 120), 1 ' Line will be Drawn from X=15 to 120,
Related Topics:

LineV

at y=20

FastAVR Basic compiler Manual

6.2.13. LineV

Description:

Draws or Clears a Vertical Line.

Syntax:

LineV (varX, varY, varYl), 0|1

Remarks:

varX X coordinate of Line, normally between 0 and 127

varY Y coordinate of TopMost pixel in Line, normally between 0 and 62
varYl Y coordinate of BottomMost pixel in Line, normally between 1 and 63
0|1 O will Clear Line, 1 will Draw Line

varYl must be greater than vary.

Example:

LineV (15, 20,
Related Topics:
LineH

60),

6.2.14. Point

Description:

1

' Vertical Line will be Drawn from y=20 to 60, at x=15

Tests if specified Pixel location is Set or Reset.

Syntax:

Var = Point (varX, wvaryY)

Remarks:

varX X coordinate, normally between 0 and 127
varY Y coordinate, between 0 and 63
var is assigned the result, 0 if pixel is Reset, 1 if Pixel is Set

Example:

n = Point (15, 2)

Related Topics:
PSet

6.2.15. Pset

Description:

If n>0 that Pixel is Set

Sets or Resets an individual Pixel at the desired position.

Syntax:

FastAVR Basic compiler Manual

Pset (varX, wvarY), 0|1

Remarks:

varX X coordinate, normally between 0 and 127
varY Y coordinate, normally between 0 and 63
011 O will Reset pixel, 1 will Set pixel, (color)

Example:
Pset (15, 20), 1 ' Pixel at coordinates 15, 20 will be Set

Related Topics:
Point
LineH
LineV

6.3. PCD8544 - NOKIA 3310

6.3.1. General
Nokia 3310 has very nice, not expensive Graphic display 84 x 48 pixels.

Here http://www.myplace.nu/mp3/nokialcd.htm You can find more data.

35.5

L4l 30

Nokia 3310 LCD
fram the JELU Web-5hop
www. jeluse

.3
WAL Y EMMPR.C Om
Pages are organized in rows (Lines), each being 8 pixels high. There are 6 Lines. Some statements are Line
oriented, not pixel. For instance, text can be written only on Lines, not in between.
Display has serial interface using only four signals plus RESET which could be driven by RC.
Unfortunely, display has not possibility to Read from. This dont allow as to have standard graphic functions like

Pset, Line and similar. To avoid this limitation a Buffer of 504 bytes could be reserved and all Drawings must be
performed in this Buffer. This is for upgrading - if there will be enought interest!

FastAVR Basic compiler Manual

Another possibility is to use SPI as serial interface - this is much faster transfer.

Display Coonection

iy

Backsioal A AN
Dont forget a 470nF capacitor beetween Vout and GND!

Look at Nokia3310.bas

6.3.2. $GLCD

Description:
Tells the compiler details about Graphic LCD connections.

Syntax:
$GLCD PCD8544, SDIN=PORTx.n, SCLK=PORTx.n, DC=PORTy.n, SCE=PORTy.n

Remarks:
PCD8544 or NOKIA3310 is the graphic controller chip used
SDIN, SCLK, DC, sCE Nokia display signals names.

SDIN and scLK MUST be on the same PORT!
DC and sCE MUST be on the same PORT!

Control signals can be declared in any order!
You may also assign any valid AvrPort pin that is available for RESET Graphic module or use an appropriate RC

setup for the LCD module reset like 10k PullUp resistor with 100nF capacitor to GND.

Example:
SGLCD NOKIA3310, SDIN=PORTA.0, SCLK=PORTA.l, DC=PORTA.2, SCE=PORTA.3

FastAVR Basic compiler Manual

6.3.3. Contrast

Description:
Sets Nokia LCD module contrast.

Syntax:

Contrast=numeric expression

Remarks:
numeric expression Value from 0to 127 to set contrast (defailt is 72).

Example:

For n=50 To 120
Contrast=n ' finding best contrast
Wait 1

Next

6.3.4. FontSet

Description:
Selects soft Font.

Syntax:
FontSet NameOfFontTable

Remarks:
NameOfFontTable Table in Flash that contains individual letter definitions.

NameOfFontTable must be declared first and added into source ($Included)!
Fonts can be edited with the FastLCD utility and saved in bas format ready to include in source!
Selected Font is active until another Font is selected with FontSet.

Example:

Dim FOHD As Flash Byte
Dim F1HD As Flash Byte
Dim n As Byte

Dim s As String*20

n=15

s="Graphic LCD"

FontSet F1HD ' Selects F1

GLcd (15, 0), n ' Writes n with F1

GLcd (15, 7), s ' Writes w with F1

FontSet FOHD ' Selects FO

GLcd (15, 1), "HD61202" ' Writes txt with FO
$Included "C:\FastAVR\FOHD.bas" ' Here is 6x8 font definition
$Included "C:\FastAVR\F1HD.bas" ' Here is 8x8 font definition
Related Topics:

GLcd

FastAVR Basic compiler Manual

6.3.5. Glcd

Description:
Writes text on graphic LCD using previously specified soft Font.

Syntax:
GLcd (varX, varP), var

Remarks:

varX Starting X coordinate, normally between 0 and 83
varP Line to write in, between 0 and 5

var num, string, string constant or hex to write

Y coordinates are in Lines not in Pixels!
Font MUST be set (Fontset)prior to using G1cd!

If You wish to show just a few words, maybe ImgSet is better (shorter) solution (word is made as an Immage)!

If sSLeadChar is defined then result will be right justified with Leading Chars as defined. Also, if Format () is
defined then optional decimal point will be inserted!

Example:

GLcd (15, 0), n

GLcd (15, 1), s

GLcd (15, 2), "This is HD61202"
GLcd (15, 3), Chr(61l)

GLcd (15, 4), Hex(61)

Writes num variable on upper Line
Writes string var on second Line
Writes string on third Line
Writes letter A on 4. Line

Writes Hex string on 5. Line

Related Topics:
FontSet

6.3.6. Gwrite

Description:
Writes a byte at selected X and Line.

Syntax:

GWrite (varX, wvarl), var

Remarks:

varX X coordinate, normally between 0 and 83
varL Line, between 0 and 5

var to be written to desired position.

This is the graphic controllers native Write function.
Y coordinates are in Lines not in Pixels!

Example:
GWrite (17, 2), 15 ' Four pixels will be written to x=17 on the Line 2.

FastAVR Basic compiler Manual

6.3.7. ImgSet

Description:
Displays an Image or a part of ImageArray on the graphic LCD at selected X and Line.

Syntax:
ImgSet (varX, varP), NameOfImgTable

Or, if You wat to display just a part of an ImageArray:
(Image must be saved as ImageArray, when edited using FastLCD utility!)

ImgSet (varX, varP, var), NameOfImgTable

Remarks:

varX X coordinate, normally between 0 and 83

varL Line, between 0 and 5

var which part of Image, (index in ImageArray)
NameOfImgTable Table in Flash that contains the bit image.

Y coordinates are in Lines not in Pixels!

NameOfImgTable must be declared first and added into source ($Included)!
Images can be edited with FastLCD image editor which can save Images in bas format.
The saved image is then ready to be included in the source program!

Example:
Dim Img0 As Flash Byte
Dim Imgl As Flash Byte

ImgSet (15, 2), Imgl ' Image Imgl will be copied to location
$Included "C:\FastAVR\ImgO.bas" ' Img0 bit image definition
$Included "C:\FastAVR\Imgl.bas" ' Imgl bit image definition

Second syntax:
Using ImageArray, a large letters, Icons or Sprites can be displayed, all saved in a single Image!
Any part of this Image is accessable by its index, yeaa - this means animations!

Example:

Dim Sclkl616HD As Flash Byte

ImgSet (15, 2, 1), Sclkl616HD ' SandClock with index 1, second sub-Image will be
displayed

$Included "C:\FastAVR\Sclkl61l6HD.bas" ' SandClock definition

Related Topics:
GLcd

FastAVR Basic compiler Manual

6.3.8. Inverse

Description:
Sets NORMAL or INVERSE screen.

Syntax:

Inverse (var)

Remarks:
var 0-normal, 1 -inverse

Only whole display can be Inversed!

Example:
Inverse (1) ' Screen is Inversed

6.3.9. Gcls

Description:
Clears the Graphic LCD

Syntax:

GCls

Example:

GCls ' Graphic LCD is now cleared
6.4. T6963C Graphic LCD support

6.4.1. $GLCD, $GCtl

Description:
Tells the compiler details about Graphic LCD connections.

Syntax:
SGLCD T6963C, Data=AVRPort, Ctrl=AVRPort, NumOfXpix, NumOfY¥pix, i
$GCtrl WR=4, RD=3, CE=2, CD=1, FS=1

Remarks:

T6963C is the graphic controller chip used

Data AVRPort where data bus is connected.

ctrl AVRPort where control lines are connected.

AVRPort any valid AVRPort. Any bidirectional port can be used!
NumOfXpix how many Pixels LCD has on X

FastAVR Basic compiler Manual

NumOf¥Ypix how many Pixels LCD has on Y

i 1 for single, 2 for double scan graphic LCD display module (low pix modules has single scan, larges double
scan. Look datasheets for details)

WR, RD, CE, cD valid Control line names for T6963C

Fs 1 for 6x8 and 0 for 8x8 fonts - tells how Bytes will be using (6 or 8 bits)

Note: Because of differences in Graphic Lcds, no provision is made for a hardware reset.
You may, however, assign any valid AvrPort pin that is available or use an appropriate RC setup for the LCD
module reset. Please refer to the datasheet or manual for the specific graphic LCD module being used.

FontSelect (FS) MUST be fixed to 1 for 6x8 internal Font and 6 pix wide column or fixed to 1 for 8x8 internal Font
and 8 pix wide column.

Control lines can be declared in any order!

Example:
SGLCD T6963C, Data=PORTB, Ctrl=PORTD, 128, 64, 1
$Gectrl WR=4, RD=3, CE=2, CD=1, FS=1

'WR is connected to PORTD.4, RD to PORTD.3...

6.4.2. Box

Description:
Draws or Clears a box.

Syntax:
Box (varX0, varY0, varXl, wvarYl), 0]1

Remarks:

varX0 X coordinate of Upper Left corner
varY0 Y coordinate of Upper Left corner
varX1l X coordinate of Lower Right corner
varYl Y coordinate of Lower Right

011 O will Clear Line, 1 will Draw Line

Example:
Circle (0, 0, 239, 127), 1 ' Rectangle around 240x128 pix LCD

Related Topics:
Pset

Line

Circle

LineH

LineV

FastAVR Basic compiler Manual

6.4.3. Circle

Description:
Draws or Clears a Circle.

Syntax:
Circle(varX, varY, radius), 0|1

Remarks:

varX X coordinate of center

varY Y coordinate of center

radius of the circle

011 O will Clear Line, 1 will Draw Line

Example:
Circle (120, 64, 60), 1 ' Circle on center 240x128 pix LCD, r=60

Related Topics:
Line

Box

LineH

LineV

Pset

6.4.4. Fill

Description:
Fills specified area on the screen.

Syntax:
Fill (varX, varY, varXl, varLl), Pat

Remarks:

varX LeftMost X coordinate of area, between 0 and NofColumns
varL TopMost coordinate, between 0 and Ymax

varX1l number of columns to Inverse

varLl number of lines (pixels) to Inverse

Pat Byte the area will be filled with

X coordinates are in Columns not in Pixels! Also suitable for clearing a specific area.

Example:
Fill (15, 1, 6, 40), &haa ' Specified area will be filled with &haa

Related Topics:
GCls
Inverse

FastAVR Basic compiler Manual

6.4.5. FontSet

Description:
Selects soft Font.

Syntax:
FontSet NameOfFontTable

Remarks:

NameOfFontTable Table in Flash that contains individual letter definitions.

NameOfFontTable must be declared first and added into source ($Included)!
Fonts can be edited with the FastLCD utility and saved in bas format ready to include in source!
Selected Font is active until another Font is selected with FontSet.

Example:

Dim FOT As Flash Byte
Dim F1T As Flash Byte
Dim n As Byte

Dim s As String*20

n=15

s="Graphic LCD"
FontSet FI1T
GLcd (15, 0), n
GLcd (15, 7), s

FontSet FOT
GLcd (15, 1), "T6963c"

$Included "C:\FastAVR\FOT.bas"
$Included "C:\FastAVR\F1T.bas"

Related Topics:
GLcd
Tlcd

6.4.6. Gcls

Description:

Clears the graphic area on Graphic LCD.

Syntax:
GCls

Example:

' Selects F1T
' Writes n with F1
' Writes w with F1

' Selects FOT
' Writes txt with FO

' Here is 6x8 font definition
' Here is 8x8 font definition

GCls ' Graphic area is now cleared

FastAVR Basic compiler Manual

6.4.7. GCommand

Description:

Directly controls T6963C graphic LCD controler. Used for several setings.

Syntax:

GCommand var

Remarks:

var appropriate value to set needed command according to tabel:

Graphic Mode Set:

&h80 Logycally OR of Text with Graphics
&h81 Logycally XOR of Text with Graphics
&h83 Logycally AND of Text with Graphics
&h84 Text only, with Attribute data in Graphic Area
&h90 Display OFF

&h92 Text Cursor ON, Blink OFF

&h93 Text Cursor ON, Blink ON

&h94 Text ON, Graphic OFF

&h98 Text OFF, Graphic ON

&h9a Text ON, Graphic ON

Text Cursor on Text Page Shape:
&ha0 1 line Cursor
shal 2 line Cursor
&ha2 3 line Cursor
&ha3 4 line Cursor
&ha4 5 line Cursor
&ha5 6 line Cursor
&ha6é 7 line Cursor
&ha7 8 line Cursor

Text Page and Cursor must be turned ON and Cursor shape defined with GCommand!

Example:
GCommand &h80 ' OR with Txt and Grph
GCommand &h98 ' turn Txt OFF, Grp ON

6.4.8. GCursor

Description:
Sets the shape of Text curcor on Text Page.

Syntax:

GCursor varX, varY

Remarks:
varX X coordinate in Characters (Columns)
varY Y coordinate in Lines

FastAVR Basic compiler Manual

Text Page and Cursor must be turned oN and Cursor shape defined with GCommand!

Example:

GCursor 5, 2 ' Cursor is positioned
Related Topics:

GCommand

6.4.9. General

User can find a lot of LCD graphic modules based on Toshiba's T6963C graphic controler. Dimensions runs from
128x64 pix to 256x128 pix.

Generaly they has Text page and Graphic page, both organized in 6 or 8 pix wide columns, depends on pin FS
(Font Select). This pin MUST be fixed in the project! User can use Graphic, Text or both together. Text screen
coordinates are in characters, while Graphic page coordinates are in pixels, starting in upper left corner (0,0). Some
graphics X coordinates are in Columns, while Y are in pixels.

User can select from 6x8 and 8x8 font driving pin FS (hard wired). Unfortunately they are the same font with large
interspace in case of 8x8. Writing on Text page is as with any standard alphanumeric LCD using it's own built-in
character generator.

Useful links:
http://doc.semicon.toshiba.co.jp/noseek/us/td/03frame.htm
http://ourworld.compuserve.com/homepages/steve_lawther/t6963c.pdf
http://202.76.113.1/varitronix/htm/product.htm
http://www.hantronix.com/index.html

6.4.10. GlLcd

Description:

Writes text on graphic LCD's Graphic page. This mode uses soft characters generator in Flash table. User can edit
Fonts using FastLCD.

FS pin setting MUST be on 1 for 6 pix Column wide or 0 for 8 pix column.

Syntax:
GLcd (varC, varl), var

Remarks:

varC Starting X coordinate in columns

varL Pixel to write in

var num, string, string constant or hex to write

X coordinates are in Columns, Y in Pixels!
Font MUST be set (FontSet)prior to using G1cd!

If You wish to show just a few words, maybe ImgSet is better (shorter) solution (word is made as an Immage)!

If sSLeadChar is defined then result will be right justified with Leading Chars as defined. Also, if Format () is
defined then optional decimal point will be inserted!

FastAVR Basic compiler Manual

Example:

GLcd (0, 0), n

GLcd (1, 10), s

GLcd (2, 30), "This is T6963c"
GLcd (3, 60), Chr(6l)

GLcd (4, 90), Hex(61)

Writes num variable
Writes string var
Writes string
Writes letter A
Writes Hex string

Related Topics:

FS pin configuration
FontSet

Tlcd

6.4.11. Glcdinit

Description:
Initializes the Graphic LCD display

Syntax:
GLcdInit

Example:
GLcdInit

Remarks:

SGLCD and $GCtrl must be setup prior to using GLcdInit.

At initial power on or anytime the graphic LCD is powered down, GL.cdinit should be called to initialize the LCD
before using any graphic statements.

Some LCDs has theirs own internal RESET, for others user MUST generate RESET (active LOW) before Calling
GLcdInit!

6.4.12. GRead

Description:
Reads a byte from the graphic LCD at selected Column and Y on the Graphic page.

Syntax:
Var = GRead(varX, varl)

Remarks:

varC X coordinate in columns
varY Y coordinate

var is assigned the value read

This is the graphic controllers native Read function.
X coordinates are in Columns, not in Pixels!

Example:

FastAVR Basic compiler Manual

n = GRead (17, 2) ' Data from Column=17 on ¥Y=2 will be Read into n.

Related Topics:
GWrite

6.4.13. GrpAreaSet

Description:
Sets the Graphic Page width in Columns.

Syntax:
GrpAreaSet col

Remarks:
col width of Graphic page

Graphic page can be wider then LCD visible area!

Example:
GrpAreaSet 20 ' Graphic page is 20 colums wide

Related Topics:
TxtAreaSet
TxtHomeSet

GrpHomeSet

6.4.14. GrpHomeSet

Description:
Sets the Graphic Page origin.

Syntax:
GrpHomeSet adr

Remarks:
adr address of Graphic page

Example:

GrpHomeSet &h0200 ' Graphic page is at &h0200 of T6963C RAM

Related Topics:
TxtAreaSet
TxtHomeSet

GrpAreaSet

FastAVR Basic compiler Manual

6.4.15. GWrite

Description:
Writes a byte at selected Column and Y on the Graphic page.

Syntax:
GWrite (varX, wvarl), var

Remarks:

varX X coordinate, normally between 0 and 127
varL Line, between 0 and 7

var to be written to desired position.

This is the graphic controllers native Write function.
X coordinates are in Columns not in Pixels!

Example:

GWrite (17, 2), 15 ' Four pixels will be written to x=17 on the Line 2.
Related Topics:

GRead

6.4.16. ImgSet

Description:
Displays an Image or a part of ImageArray on the graphic LCD at selected Column and Y.
FS pin setting MUST be on 1 for 6 pix Column wide or 0 for 8 pix column.

Syntax:
ImgSet (varC, varY), NameOfImgTable

Or, if You wat to display a element of an ImageArray:
(Image must be saved as ImageArray, when edited using FastLCD utility!)

ImgSet (varC, varY, var), NameOfImgTable

Remarks:

varC coordinate in Column

varY Y coordinate (in Pix)

var which part of Image, (index in ImageArray)
NameOfImgTable Table in Flash that contains the bit image.

X coordinates are in Columnc not in Pixels!

NameOfImgTable must be declared first and added into source ($Included)!
Images can be edited with FastLCD image editor which can save Images in bas format.
The saved image is then ready to be included in the source program!

Example:
Dim Img0 As Flash Byte
Dim Imgl As Flash Byte

FastAVR Basic compiler Manual

ImgSet (5, 12), Imgl ' Image Imgl will be copied to location
$Included "C:\FastAVR\ImgO.bas" ' Img0 bit image definition
$Included "C:\FastAVR\Imgl.bas" ' Imgl bit image definition

Second syntax:
Using ImageArray, a large letters, Icons or Sprites can be displayed, all saved in a single Image!
Any part of this Image is accessable by its index, yeaa - this means animations!

Example:

Dim Sclkl616HD As Flash Byte

ImgSet (15, 2, 1), Sclkl616HD ' SandClock with index 1, second sub-Image will be
displayed

$Included "C:\FastAVR\Sclkl616HD.bas" ' SandClock definition

Related Topics:
GLcd

6.4.17. Inverse

Description:
Inverses specified area on the screen.

Syntax:

Inverse (varX, varY, varXl, varLl)

Remarks:

varX LeftMost X coordinate of area, between 0 and NofColumns
varL TopMost coordinate, between 0 and Ymax

varX1l number of columns to Inverse

varLl number of lines (pixels) to Inverse

X coordinates are in Columns not in Pixels!

Example:
Inverse (15, 1, 6, 40) ' Specified area will be Inversed

Related Topics:
Fill

FastAVR Basic compiler Manual

6.4.18. Line

Description:
Draws or Clears a Line of any angle.

Syntax:
Line (varX, varY, varXl, varYl), 0|1

Remarks:

varX X coordinate of start pixel

varY Y coordinate of start pixel

varX1l X coordinate of end pixel
varYl Y coordinate of end pixel

011 O will Clear Line, 1 will Draw Line

Example:
Line (0, 0, 239, 127), 1 ' Diagonal Line on 240x128 pix LCD

Related Topics:
LineH

LineV

Pset

Circle

Box

6.4.19. LineH

Description:
Draws or Clears a Horizontal Line.
FS pin setting MUST be on 1 for 6 pix Column wide or 0 for 8 pix column.

Syntax:
LineH (varX, varY, varXl), 0|1

Remarks:

varX X coordinate of LeftMost pixel in Line
varY Y coordinate of Line

varX1l X coordinate of RightMost pixel in Line
0|1 O will Clear Line, 1 will Draw Line

varX1l must be greater than varx.

Example:

LineH (15, 20, 120), 1 ' Line will be Drawn from X=15 to 120,
Related Topics:

LineV

at y=20

FastAVR Basic compiler Manual

6.4.20. LineV

Description:

Draws or Clears a Vertical Line.
FS pin setting MUST be on 1 for 6 pix Column wide or 0 for 8 pix column.

Syntax:

LineV (varX, wvarY, varY¥l), 0|1

Remarks:

varX X coordinate of Line
varY Y coordinate of TopMost pixel in Line

varYl Y coordinate of BottomMost pixel in Line
0|1 O will Clear Line, 1 will Draw Line

varYl must be greater than vary.

Example:
LineV (15, 20,

Related Topics:
LineH

60),

6.4.21. Point

Description:

1

' Vertical Line will be Drawn from y=20 to 60, at x=15

Tests if specified Pixel location is Set or Reset.

Syntax:

Var = Point (varX, wvaryY)

Remarks:

varX X coordinate
varY Y coordinate
var is assigned the result, 0 if pixel is Reset, 1 if Pixel is Set

Example:
n = Point (15,

Related Topics:
PSet

2)

If n>0 that Pixel is Set

FastAVR Basic compiler Manual

6.4.22. Pset

Description:
Sets or Resets an individual Pixel at the desired position.
FS pin setting MUST be on 1 for 6 pix Column wide or 0 for 8 pix column.

Syntax:
Pset (varX, wvarY), 0]1

Remarks:

varX X coordinate

varY Y coordinate

011 O will Reset pixel, 1 will Set pixel, (color)

Example:
Pset (15, 20), 1 ' Pixel at coordinates 15, 20 will be Set

Related Topics:
Point
LineH
LineV

6.4.23. Tcls

Description:
Clears the text area on Graphic LCD.

Syntax:
TCls

Example:
TCls ' Just text area is now cleared

Related Topics:
Fill

6.4.24. TLcd

Description:
Writes text on graphic LCD's Text page defined on TxtHomeSet. This mode uses build-in characters generator.
User can select beetween 6x8 font (FS=1) ans 8x8 font (FS=0).

Syntax:
TLcd (varC, varl), var

Remarks:

varC Starting X coordinate in columns

varL Line to write in

var num, string, string constant or hex to write

FastAVR Basic compiler Manual

X and Y coordinates are in Columns and Lines, not in Pixels!

If sSLeadChar is defined then result will be right justified with Leading Chars as defined. Also, if Format () is
defined then optional decimal point will be inserted!

Example:
TLcd (0, 0), "This is T6963C" ' Writes string on upper Line

Related Topics:

FS pin configuration
GCursor

GCommand

6.4.25. TxtAreaSet

Description:
Sets the Text Page width in Columns.

Syntax:
TxtAreaSet col

Remarks:
col width of Text page

Text page can be wider then LCD visible area!

Example:
TxtAreaSet 20 ' Text page is 20 colums wide

Related Topics:
TxtHomeSet

GrpHomeSet
GrpAreaSet

6.4.26. TxtHomeSet

Description:
Sets the Text Page origin. Can be anywhere in the T6963C RAM.

Syntax:
TxtHomeSet adr

Remarks:
adr address of Text page

Example:
TxtHomeSet &h0000 ' Txt page is at the begining of T6963C RAM

FastAVR Basic compiler Manual

Related Topics:
TxtAreaSet

GrpHomeSet
GrpAreaSet

6.5. 1WWrite

Description:
1WReset, 1IWRead and 1WWrite are the commands used to communicate with Dallas 1 Wire devices.

Syntax:

1WWrite [n,] varlexp|func
or block version
lWWrite [n,] wvarl, m

Remarks:
1wWwrite writes a variable to the bus (var), the result of an entire expression (exp) or a function result (func)

n is index if more than one 1Wire bus are used, 0 is default for single 1Wire bus or first 1Wire bus!

Example:
lwwrite &hcc; &hd44 ' writing on first 1lWire bus
lwwrite 2, &hcc; &h44 ' writing on 1Wire bus with index 2

Related topics:
$1Wire

1WReset
1WRead

6.6. 1WReset

Description:
1WReset, 1IWRead and 1WWrite are the commands used to communicate with Dallas 1 Wire devices.

Syntax:

var=1WReset [n]
or
1WReset [n]

Remarks:

FastAVR Basic compiler Manual

1WReset resets the bus and returns the status in var (byte), 0 = there is no 1Wire devices on bus!
n is index if more than one 1Wire bus are used, 0 is default for single 1Wire bus or first 1Wire bus!

Example:

a=lwreset, 1 !

reseting secont (index 1) 1Wire bus

Related topics:

$1Wire
1WRead
1WWrite

6.7. 1WRead

Description:
1WReset, 1IWRead and 1WWrite are the commands used to communicate with Dallas 1 Wire devices.

Syntax:
var=1WRead [n]

or block wversion
1WRead [n,] varl, m

Remarks:
1wWRead reads from the 1TWIRE device and stores the result in var
Second syntax is special block read, m bytes will be read and stored from var1 up in SRAM. var1 MUST be global!

n is index if more than one 1Wire bus are used, 0 is default for single 1Wire bus or first 1Wire bus!

Example:
S1wire=PORTD.3

lwread n, 8 ' block 1Wread, n must be global
x=1lwread ' 1Wread in variable x

Related topics:
$1Wire
1WReset
1WWrite

FastAVR Basic compiler Manual

6.8. Abs

Description:
Returns the absolute value of its argument.

Syntax:

var=Abs (numeric expression)

Remarks:
var will contain the positive value of the signed numeric expression. (integer or Long)

Example:

n=-15 'n contains -15
n=Asc (n) 'n will contain 15
6.9. Ac

Description:

Defines the type of Analog Comparator Interrupt.

Syntax:
Ac type

Remarks:
type can be:
Rising
Falling
Toggle

Attention! Default setings is Toggle!

Example:
Ac Rising ' Aci will be triggered on the rising edge.

Related topics:
Start

Stop
Enable

Disable

6.10. Acos

Description:
Calculates Inverse Cosine.

Syntax:

var=Acos (numeric expression)

Remarks:
var receives a Acos of numeric expression
numeric expression mustbe positive

FastAVR Basic compiler Manual

Acos can return value in Degrees or Radians depends on $Angles Metastatement!

Example:
Dim n As Float

n=Acos (0.5) 'n=60, (if $Angles=Deegrees)

Related topics:
Sin

Cos

Tan

Asin

Atan

6.11. Adc

Description:
Reads the converted analog value from the ADC (valid only for AVR devices with built in ADC).

Syntax:

var=ADC (channel) ' 10 bits conversion
var=ADCS8 (channel) ' 8 bits conversion
Remarks:

channel is the number of the ADC channel (mux).
var is a variable that stores the ADC value read.
Adc8(ch) returns 8 bit value.

Note that ADC must be started first!

Example:

Start Adc
n=Adc8 (1) ''n
w=Adc (1))

8 bit ADC value
10 bit ADC value

Related topics:
Start

Stop

6.12. Asc

Description:
Returns the ASCII code of a character in a string argument.

Syntax:

var=Asc (string or string constant [, numeric expression])

Remarks:

FastAVR Basic compiler Manual

Returns the ASCII code of the first character or any character that the second optional numeric expression is
pointing to.

Example:

s="A"

n=Asc(s) 'n will contain 65

s="12345"

n=Asc(s, 3) 'n will contain 51 (ASCII code for "4")

Related topics:
Chr

6.13. Asin

Description:
Calculates Inverse Sine.

Syntax:

var=Acos (numeric expression)

Remarks:
var receives a Asin of numeric expression
numeric expression

Asin can return value in Degrees or Radians depends on $Angles Metastatement!

Example:
Dim n As Float

n=Asin (0.5) 'n=30, (if $Angles=Deegrees)

Related topics:
Sin

Cos

Tan

Asin

Acos

Atan

FastAVR Basic compiler Manual

6.14. Atan

Description:
Calculates Inverse Tangens.

Syntax:

var=Atan (numeric expression)

Remarks:
var receives a Atan of numeric expression
numeric expression

Atan can return value in Degrees or Radians depends on $Angles Metastatement!

Example:
Dim f1 As Float

fl1=ATan (1) 'f1=45, (if $Angles=Deegrees)

Related topics:
Sin

Cos

Tan

Asin

Acos

6.15. Atan2

Description:
Returns the angle from the X axis to a Point (x,y) in units defined in sangles (default: Radians)

Syntax:
var=Atan2 (x,Vv)

Atan2 can return value in Degrees or Radians depends on $Angles Metastatement!

Remarks:

var receives an angle Atan2

y is a number argument cooresponding to Y of point (y,x)
x is a number argument cooresponding to X of point (y,x)

|

FastAVR Basic compiler Manual

Example:
Dim f1 As Float

fl1=ATan2 (6, 6) 'f1=45, (if $Angles=Deegrees)

Related topics:
Sin

Cos

Tan

Asin

Acos

Atan

6.16. Baud

Description:
Overrides the $Baud command.

Syntax:
Baud = const [, Parity, DataBits, StopBits]
Baud2 = const ' for second UART

Remarks:

const is the baud rate number - standard values:

1200, 2400, 4800, 9600, 19200, 38400, 56600,76800,115200
but can be any value

Parity N, O, E, M or S (if Parity is set then DataBits must be 9!)
DataBits 8 or 9
StopBits 1 or 2 (in case of 9 DataBits, must be only 1 StopBit)

Example:
Baud=1200 'default = N, 8, 1
Baud2=9600 'default = N, 8, 1

Related topics:
Print

PrintBin

Start

Stop

Input

[nputBin

FastAVR Basic compiler Manual

6.17. Bcd

Description:
Returns the BCD value of a variable.

Syntax:

varl=Bcd (var2)

Remarks:
vari is the target variable.
var2 is the source variable.

Example:
n=18
m=Bcd (n) ' m=&hl8

Related topics:
FromBcd
Chr

6.18. BitWait

Description:
Waits for a specified p1nx.bit to become 1 or 0.

Syntax:
BitWait name 1]0
BitWait PINx.pin 10

Remarks:
name is the name of PORT.pin defined with S$Def.
PINx.pin is name of the physical pin.

Note: BitWait waits for specified bit value until this value is reached!

Example:

$Def sig=PORTD.5

BitWait sig, 1 'the program waits for 1
BitWait PIND.4, O 'the program waits for 0

FastAVR Basic compiler Manual

6.19. Case
Select

6.20. Chr
Description:

Converts ASCII code into the corresponding ASCII character.

Syntax:

varl=Chr (var2)

Remarks:
varl is the target variable.
var2 is the source variable.

Example:

n=65

Print Chr (n) 'Displays A
Related topics:

Asc
BCD

6.21. Const

Description:
Declares a constant.

Syntax:

Const name=NumConst [, simple expression]

Remarks:
name is a name of your choice.
NumConst is the value of the constant.

Example:
Const True=1l, False=0

Const time=250

Const uppr=time+50 ' uppr is 300

Const s="FastAVR" ' String constants also
Related topics:

$Def

FastAVR Basic compiler Manual

6.22. Cls

Description:
Clears the LCD and sets the cursor to home position.

Syntax:
Cls

Example:
Cls 'Clears the LCD

Related topics:
LCD

Locate

Cursor

Display

6.23. Cos

Description:
Returns the trigonometric Cosine of its argument.

Syntax:

var=Cos (numeric expression)

Remarks:
var type Float receives a Cosine of numeric expression
numeric expression can be in Radians or Deegrees, depending on $Angles metastatement!

Example:
Dim n As Byte
Dim f1 As Float

n=30 ' assuming $Angles=Degrees
fl=Cos (n) ' £1=0.8660254

Related topics:
Sin

Tan

Asin

Acos

Atan

FastAVR Basic compiler Manual

6.24. Cosh

Description:
Returns the Cosine Hiperbolicus of its argument.

Syntax:

var=Cosh (numeric expression)

Remarks:
var type Float receives a Cosh of numeric expression
numeric expression

Example:
Dim f1 As Float

f1=Cosh (5) '£1=74.20995

Related topics:
Sinh
Tanh

6.25. CPeek

Description:
Returns a Byte from program memory (flash).

Syntax:

var=CPeek (adr)

Remarks:
var The variable that is assigned.
adr The address in program memory.

Example:
m=CPeek (n)

Related topics:

Poke
Peek

6.26. Crc8

Description:
Calculates 8bit crc value in SRAM, starting at adr of var.

Syntax:

varl=Crc8 (var, n)

FastAVR Basic compiler Manual

Remarks:

vari is the calculated Crc value.

var itself is the starting address in SRAM (If here is variable, then address of this variable is used.
n is the number of bytes to calculate Crc.

Example:
Dim n(8) As Byte
Dim Crc As Byte

Crc=Crc8(n, 8) 'calculate 8bit crc 8bytes from n up

Crc=Crc8 (VarPtr(n)+3 ,8) 'we are adding here 3 to the address of variable n

6.27. Cursor

Description:
Controls the LCD cursor behavior.

Syntax:
Cursor On|Off|Blink|NoBlink

Remarks:
Default is Off and NoBlink

Example:

Cursor Off 'Cursor is not wvisible
Cursor On 'Cursor 1is visible
Cursor Blink 'Cursor is blinking

Related topics:
LCD

Locate

Cls

Display

6.28. Data

Look at Dim

6.29. Declare

Description:
Explicitly declares a user Subroutine or Function.

Syntax:
Declare Sub SubName ([parl As type] [, par2 As Typel)

FastAVR Basic compiler Manual

Declare Function FuncName ([parl As typel] [, par2 As typel]) As rType
Declare Interrupt IntType ()

Remarks:

SubName is a subroutine name of your choice.

FuncName is a function name of your choice.

parx is a name of passing parameters to the Sub or Function

rType is type of the returned value of function, (Byte, Integer, Word or Long)
IntType is the type of Interrupt (look at Interrupts)

Very important: Declared belongs to the header of the program, before any other normal statements!
Parameter's names used in Declare statements MUST be the same as names in the actual Subs or Functions!

Example:

Declare Sub Test (n As Byte) 'declares a Sub Test

Declare Function Testl(n As Byte) As Byte ‘'declares a Function Testl

Declare Interrupt Ovfl () 'declares a Timerl Overflow Interrupt routine
6.30. Decr

Description:

Decrements var by 1

Syntax:

Decr var

Remarks:
var is a numeric variable.

Example:

Decr a 'a=a-1
Related topics:
Incr

6.31. DefLcdChar

Description:
Defines one of eight LCD special characters.

Syntax:
DefLcdChar n, bytel, byte2, byte3, byted, byte5, byte6, byte7, byte8

Remarks:
n number of special character (0-7)
bytex 8 bytes defining special character

Graphic editor for LCD characters will automaticaly insert this statement at current cursor position, but user has to

FastAVR Basic compiler Manual

modify n from 0 to range 0-7!

Example:

DefLcdChar 0, &h08, &hl0, &hlC, &h00, &h00, &h04, &hl1l8, &hO0O
Lcd Chr (0)

6.32. Dim

Description:

Declares and dimensions arrays and variables and their types.

Syntax:
Dim VarName As [Xram|Flash] Type [At &h1000]
Dim VarName (n) As Type

Remarks:
VarName is the variable name.
type is one of the following variable types:

Bit uses one of 16 reserved bits (R2 and R3)
Byte uses one byte of RAM memory

Integer uses one two of RAM memory

Word uses two bytes of RAM memory

Long uses four bytes of RAM memory

Float uses four bytes of RAM memory

String * Length uses "length" Bytes of RAM memory, plus one more for termination of the string.
Length is the number of string variable elements(characters).
n is the number of array elements
Xram var will be placed in external RAM at address specified after At in hex.
Flash constants will be placed in Flash at address specified by VarName.

Very important: Dim belongs to the header of the program, just after Declares and BEFORE any other normal
statements!

Attention:

Data and Lookup keywords were removed because this mechanism didn't allow the whole range of data types to be
built!

Here is the new implementation for table use.

Dim TableName As Flash Type

TableName is table of specific type of constant in Flash.
User can fill table:

TableName = 11,22,33,44,
55,66,77,88

User can fill also a table of strings:

TableName = London, Newyork, Paris, Roma,
Berlin, Ljubljana, Madrid, Amsterdam

As you can see, data can continue in the next line and stops where the comma is missing!
Access to table:

FastAVR Basic compiler Manual

var=TableName (index)

Tables in Flash MUST be initialized at the END of Program!

Example:

Dim a As Byte 'global byte variable named a

Dim w As Word 'global word variable named w

Dim f As Float 'global word variable named w

Dim db(10) As Byte 'global array of ten bytes named n

Dim sl As String * 8 'global string variable named sl, length must be specified
Dim s2 As String * 9 'global string variable named s2, length must be specified
Dim a As Xram Byte 'global byte variable named a in Xram

Dim w(l6) As Flash Word 'global word constant in Flash (table), number of elements could be
also declared

Dim s As Flash String 'global string constants in Flash (table), without strings length

Array of Strings Example:

Dim MyString(10) As String * 7 ' ten Strings seven characters each (total 8)
MyString=(" ") ' will init all array elements to " "
MyString=("123", "ABC", " ") ' will init first three elements

Arrays, Bits and Strings can not be Local variables!

Related topics:
Local

6.33. Disable

Description:
Disables Global Interrupts and/or individual Interrupts.

Syntax:
Disable Interrupts

Disable int

Remarks:
int is a valid Interrupt type

Look at Interrupts

Example:
Disable Interrupts ‘'disables Interrupts (Global)
Disable Ovfl 'from now on Ovfl is disabled

Related topics:
Enable

Interrupts

FastAVR Basic compiler Manual

6.34. Display

Description:
Controls the LCD ON or OFF.

Syntax:
Display On|Off

Remarks:
Default is On.

Example:
Display On 'Display is ON
Display Off 'Display is OFF

Related topics:
LCD

Locate

Cls

Display

6.35. DegToRad

Description:
Converts Deegrees to Radians.

Syntax:
var=DegToRad (varl)

Remarks:
var The var that is assigned Radians.
var1 The Deegrees to convert.

Example:
Dim n As Byte
Dim f1 As Float, f2 As Float

£1=180
f2=DegToRad (f1) '£2=3.141593

Related topics:

RadToDeg
$Angles

100

FastAVR Basic compiler Manual

6.36. Do

Description:
Defines a loop of statements that are executed while a certain condition is thrue. Because test for condition is at the
end of the loop, the loop itself will be executed at least once!

Syntax:
Do

statements

Exit Do 'yvou can EXIT from the loop at any time
Loop [While condition]

Remarks:
condition The Numeric or string expression that evaluates to True or False.

Statements within loop are executed at least one time, because test for condition is at the end of loop.
Useful for never ending loop.

Example:
Dim i As Byte

Do ' never ending loop
For i=0 To 5
Print Adc8 (1)
Waitms 250
Next
Loop

Related topics:
While-Wend

6.37. DTMF

Description:
Generates DTMF tone.

Syntax:
DTMF (var)

Remarks:
var, expression or constant must be beetween 0 and 15

Key var and Tones Table
0 0

O ~J oy U W
O ~J oy U W

101

FastAVR Basic compiler Manual

9
10
11
12
13
14
15

#= 0 QWX o

ATTENTION!

Timer1 and OVF1 interrupt are used. User can NOT use this timer and interrupt for other purposes!

User MUST enable global interrupts
Enable Interrupts

and Ovf0 interrupt

Enable Ovfl

Note also that some filtering is necesary at the output (pin OC1)!

Example:
Enable Interrupts 'user must enable interrupts

DTMF (5)

Related topics:
$DTMF

6.38. Enable

Description:
Enables Global Interrupts and/or individual Interrupts.

Syntax:
Enable Interrupts
Enable int

int is a valid Interrupt type

Remarks:
Check Interrupt types for each microcontroller used!

Example:
Enable Interrupts 'enables global Interrupts
Enable Ovfl 'enables Timerl Ovfl Interrupt

Related topics:
Disable

Interrupts

102

FastAVR Basic compiler Manual

6.39. End

Description:
Ends program execution.

Syntax:
End

Remarks:

It is not necessary to use this statement if You are using a never-ending loop.

6.40. Exit

Sub
Function
For-Next
Do

While

6.41. Exp

Description:
Calculates a base number raised to a power.

Syntax:

var=Exp (numeric expression)

Remarks:
var receives a Exp of numeric expression
numeric expression

Example:
Dim n As Float

n=Exp (3.45) 'n=3.150039E+01

Related topics:
Log

Log10
Pow

103

FastAVR Basic compiler Manual

6.42. Find8

Description:
Finds a value in a Table of bytes.

Syntax:

var=Find8 (varl, TableName)

var returned value
varl search value
TableName Table which will be searched,

Remarks:
Function returns position of searched element or 0 if there is no such element!
Table must be declared as data in flash with number of elements and initialized (at the end of program).

Example:

Dim n As Byte

Dim Table (9) As Flash Byte ' number of elements MUST be also declared
n=Find (55, Table) ''n will be 5

Table = 11,22,33,44,55,66,77,88,99 'table of 9 elements

Related topics:
Find16

6.43. Find16

Description:
Finds a value in Table of Words or Integers.

Syntax:

var=Findl6 (varl, TableName)

var returned value
varl search value
TableName Table which will be searched

Remarks:
Function returns position of searched element or 0 if there is no such element!
Table must be declared as data in flash with number of elements and initialized (at the end of program).

Example:

Dim n As Word

Dim Tablel (9) As Flash Word ' number of elements MUST be also declared
n=Findl6 (5555, Tablel) ''n will be 5

Tablel = 1111,2222,3333,4444,5555,6666,7777,8888,9999 'table of 9 elements

Related topics:
Find8

104

FastAVR Basic compiler Manual

6.44. For

Description:
Defines a loop of program statements whose execution is controlled by a loop counter.

Syntax:
For counter=start To stop [Step [-] StepValue]
statements
[Exit For] 'yvou can EXIT from the loop at any time
Next
Remarks:

counter numeric variable - Byte, Integer or Word!

start numeric expression specifying initial value for counter

stop numeric expression giving the last counter value

stepvalue numeric constant, default is 1, can be negative for decrement

Attention! Counter MUST be Byte, Integer or Word!

Example:
Dim i As Byte

Do
For i=0 To 5
Print Adc8 (1)
WaitMs 250
Next
Loop

Related topics:

Do-Loop
While-Wend

6.45. Format

Description:
Defines Format for Print, Lcd, Tled, Gled and Str().

Syntax:

Format (Int|Scientific,Frac)

Remarks:

Int Number of Integer numbers, - for Float max 10, min 1. Scientific (or 0) for scientific format, —x . xxxxxE+yy
Frac Number of Fractal numbers, - for Float min 1.

Floating point numbers can be presented in normal: 6532.818 'Format (4, 3)
or in Scientific Format: 6.532818E+03 '"Format (Scientific, 7)

Scientific format is Default for Float numbers!

Floating point numbers of Single precision has max 7 nums but can lay beetween 10E+38 and 10E-38.
The last (7th) num is already rounded!

105

FastAVR Basic compiler Manual

Note that Format MUST be first mentioned under metastatement $LeadChar (for Byte, Integer, Word and Long - not
for Float)!
Numbers are RIGHT justified!

Example:
Dim n As Byte, x As Word, f As Float
Dim s As String*5

n=65: w=1234: f=-1.234E+02

Format (3, 0)
Print n
'output will be 065 (assume that "0" is defined as LeadChar)

Format (4,1)
Print w
'output will be 0123.4 (assume that "0" is defined as LeadChar)

Format (5, 3)
Print f
'output will be -00123.400 (assume that "0O" is defined as LeadChar)

Format (Scientific, 3)

Print f
'output will be -1.234E+02

Related topics:
$LeadChar

6.46. Fract

Description:
Returns Fractional part of Float argument as Float.

Syntax:

var=Fract (numeric expression)

Remarks:

var receives a Fractional part of numeric expression
numeric expression

Example:
Dim n As Float

n=Fract (3.45) 'n=0.45

Related topics:
Int

106

FastAVR Basic compiler Manual

6.47. FromBcd

Description:

Calculates value from BCD format.

Syntax:

varl=FromBcd (var2)
Remarks:

vari is the target variable.

var2 is the source BCD variable.

Example:
m=FromBcd (n)

Related topics:
BCD

6.48. Function

Description:
Defines a Function procedure.

Syntax:

Function NameOfFunc (parameters list)

Remarks:

NameOfFunc is the name of Function

parameters list is the name and type of parameters, comma delimited (can not be Bit) - MUST has the same names

as is in theirs Declare statements!

As Type is type of returned value (Byte, Integer, Word, Long or Float)

Function must first be declared with Declare keyword.

Example:

Declare Function Mul (a As Byte,

Dim n As Byte

n=Mul (5, 7) 'n=35

YILLTITL LSS
Function Mul (a As Byte, b As Byte)

Return a*b

[Exit Function] ' optionally exit from Function
End Function ' end of Function

Related topics:
Declare

Return

Sub

b As Byte)

107

FastAVR Basic compiler Manual

6.49. GoTo

Description:

Transfers program execution to the statement identified by a specified label.

Syntax:
Goto label

Remarks:
label is a line identifier indicating where to jump

Example:
Point: 'a label must end with a colon

Goto Point

6.50. I2CRead

12CStart

6.51. I2CStart

Description:

[2CStart starts the 12C transfers.

[2CStop stops the 12C transfers

[2CRead receives a single byte through 12C bus
[2CWrite sends a single byte through 12C bus

Syntax:

I2CStart adr

varl=I2CRead, Ack [, Nack]
I2CWrite var2

I2CStop

Remarks:

adr The address of the 12C-device.

var1 The variable that receives the value from the 12C-device.
var2 The variable or constant to write to the 12C-device

Ack - tells that there will be more Readings
Nack - this is last Reading (MUST be present)

Dont forget pulup resistors on SDA and SCL (4k7 - 10k)!

Notes about 12Cread: The first call to 12Cread will isue also device address for Read (last bit is automaticaly set),

last 12Cread command MUST be used with Nack option!

Examplet:
"reading time from Philips PCF85x3
I2cstart &hal 'generate start

108

FastAVR Basic compiler Manual

I2cwrite 2 'select second register
s=I2cread, Ack

m=I2cread, Ack

h=T2cread, Nack

I2cstop 'generate stop

Example2:
YIS
Sub WritePage (Padr As Word)

Local i1 As Byte

I2Cstart &hal ' 24C64 address
I2Cwrite Msb (Padr) ' write adr MSB
I2Cwrite Padr ' write adr LSB
For i=0 To 31
I2Cwrite buff (i) ' write data from array buff
Next
I2Cstop
WaitMs 6 ' wait to write (10 max)
End Sub
Example3:

N N NN,
Sub ReadPage (Padr As Word)
Local i1 As Byte, tmp As Byte

I2Cstart &hal ' 24C64 address
I2Cwrite Msb (Padr) ' write adr MSB
I2Cwrite Padr ' write adr LSB

tmp=I12Cread, Ack ' first read deefers from others

For i=0 To 31
buff (i)=tmp ' we read into buff array
tmp=I2Cread, Ack
Next
tmp=I2Cread, Nack ' dummy read - we need Nack!
I2Cstop
End Sub

Related topics:
[2CStop
[2CWrite
[2CRead

108

FastAVR Basic compiler Manual

6.52. 12CStop

6.53. I2CWrite

12CStart

6.54. If

Description:
Conditionally executes a group of statements, depending on the value of an expression(s).

Syntax:
If expression Then statement

or

If expression Then
statements

ElseIf expression Then
statements

Else
statements
End If

Remarks:

While testing bit variables of any kind (bit var, port.bit or var.bit) only "=1", "=0" or nothing can be used!
Conditions and statements may be contained on one line or multiple lines.

Instead of using many ElselIfs, Select Case may be used!

Example:
If a>5 And a<1l0 Then
Print a; " a is Between 5 and 10"
ElseIf a=5 Then
Print a; " a is 5"
Else
Print b; " a has other value"
End If
If a Then 'If a>0 generates extra comact code
Print a
End If

If PINB.5 Then
Print a
End If

If a.3 Then
Print a
End If

110

FastAVR Basic compiler Manual

Related topics:
Select

6.55. Incr

Description:
Increments var by 1

Syntax:

Incr var

Remarks:
var variable to increment

Example:

Incr a ' a=a+l
Related topics:
Decr

6.56. InitLcd

Description:

Re initialize alphanumeric LCD.

Syntax:
InitLcd

Remarks:

If LCD was turned OFF because of entering in one of the PowerDown modes it needs to be Relnitialized after

waken up.

Example:
InitLcd

Related topics:

$lcd
Led

111

FastAVR Basic compiler Manual

6.57. InitEE

Description:
Initialize EPROM data to be written during device programming.

Syntax:
InitEE = 11, 22, 33, 44,
55, 66, 77, 88
Remarks:
InitEE will produce a hex file named BasName.eep for EPROM programming starting at adr 0!
Numeric constants are comma delimited and can be placed in more than one line.

Related topics:

ReadEE
WriteEE

6.58. Input

Description:
Returns the value or string from the RS-232 port.

Syntax:

Input ["prompt"], varl, var2,

Input2 ["prompt"], varl, var2, ' for second UART
Remarks:

prompt IS an optional string constant printed before the prompt character.
varX is/are the variable(s) to accept the input value or a string, not for Longs!

With the built-in terminal emulator this statement makes the PC keyboard an input device.

Example:

Input s

Input n, w

Input "n="; n; "w="; w

Input2 s

Related topics:
Print
PrintBin

[nputBin

112

FastAVR Basic compiler Manual

6.59. InputBin

Description:
Returns a binary value(s) from the RS-232 port.

Syntax:
InputBin varl; var2;...

InputBin var, n

InputBin2 varl; var2;... ' for second UART

Remarks:

var, vari, var2 variables that receive a binary value from serial port

n number of bytes to receive. Bytes will be stored from var up!

The number of bytes to read depends on the variable lenth You use, 1 for byte, 2 for integer or word.

Example:
InputBin a; w ' waits three bytes
InputBin a, 12 ' waits for 12 bytes (from a up)

InputBin2 a; w ' waits three bytes

Related topics:
PrintBin

6.60. Int

Description:
Returns Integer part of Float argument as Float.

Syntax:

var=Int (numeric expression)

Remarks:
var receives an Integer part of numeric expression
numeric expression

Example:
Dim n As Float

n=Int (372.41855) 'n=372.0

Related topics:
Fract

113

FastAVR Basic compiler Manual

6.61. IntX

Description:
Defines the type of external Interrupt trigger.

Syntax:
Intx type

Remarks:
X interrupt number 0-7
type can be:

Rising

Falling

Low

Attention! Default setings is Low!

Example:

Int0 Rising ' Int0 will be triggered on the rising edge.

6.62. Instr

Description:
Return the first occurrence of a specified string into another string.

Syntax:

var=Instr ([varl,] mainString, matchString)

Remarks:

var receives possition of matchString in mainString or 0 if matchString is not in mainString or any error.

varl starting search position, can be omitted.
mainString source String (MUST be string var, not string constant)
matchString can be String Constant.

Example:
Dim Name As String*15
Dim Part As Byte

Name="Mona Lisa"
Part=Instr (Name, "Li") 'Part=6

Related topics:

114

FastAVR Basic compiler Manual

6.63. Key()

Description:
Returns a byte in var representing a pressed key in the line or matrix keyboard!

Syntax
var=Key ()

NoKey () only for line switches, waits until user releases keys.

Remarks:
var contains the pressed key, returns 0 if no key is pressed.

Note: If your main loop (or other loops) is very bussy then calling Key must be done in EXternal interrupt routine.

Example:
a=Key ()
NoKey () 'waits until user releases keys

Related topics:

PcKey
RC5

6.64. LCase

Description:
Returns an all-lowercase version of its string argument.

Syntax:

var=LCase (varl)

Remarks:
var lowercase string version of var1
vari original string variable.

Argument MUST be single String variable!

Example:
Dim Name As String*15
Dim Part As String*10

Name="Mona Lisa"
Part=LCase (Name) 'Part="mona lisa"

Related topics:
UCase

115

FastAVR Basic compiler Manual

6.65. Led

Description:
Prints to standard ASCII LCD modules.

Syntax:
Lcd varl; var2;...
Lcd Hex (varl)

Remarks:
var1, var2 are vars to be printed on LCD
Hex(var1) var1 will be printed in hexadecimal format

If sSLeadChar is defined then result will be right justified with Leading Chars as defined. Also, if Format () is
defined then optional decimal point will be inserted (even with Integer variables!)!

Example:
Lcd "FastAVR Basic Compiler!"
Locate 2, 1: Lcd "n="
Do
Locate 2, 3: Lcd n
Incr n
WaitMs 250
Loop

Related topics:
LCD

Locate

Display

Cursor
DefLcdChar
InitLcd

6.66. Left

Description:
Returns the leftmost n characters of a string.

Syntax:

var=Left (varl, n)

Remarks:

var string that Left chars are assigned.

vari original string (MUST be string var, not string constant).
n number of characters to be returned from left.

Example:
Dim Name As String*15
Dim Part As String*10

Name="Mona Lisa"
Part=Left (Name, 4) 'Part="Mona"

116

FastAVR Basic compiler Manual

Related topics:
Right
Mid

6.67. Len

Description:
Returns the length of a string.

Syntax:

var=Len (string var)

Remarks:
var string that receives Legth in chars of string var.
string var original string.

Example:
Name="Mona Lisa"
n=Len (Name) 'n=9

Related topics:
Left

Right

Mid

Str

6.68. Local

Description:

Declares and dimensions Local variables, seen only inside of Subs and/or Functions.

Syntax:
Local VarName As Type

Remarks:
VarName is the variable name.
type is one of the following variable types:

Byte uses one byte of RAM memory
Integer uses one two of RAM memory
Word uses two bytes of RAM memory
Long uses four bytes of RAM memory
Float uses four bytes of RAM memory

Length is the number of string variable elements(characters).
n is the number of array elements

Example:

N N YN
Sub Test (n As Byte)
Local a As Byte 'local byte variable named a

117

FastAVR Basic compiler Manual

Local w As Word 'local word variable named w

Body of Sub

End Sub

Arrays, Bits and Strings can not be Local variables!

Related topics:
Dim

6.69. Locate

Description:
Locates the position for the next character to be printed.

Syntax:
Locate row, varl

Locate adr

Remarks:

row is a numeric constant representing the row to print in.

varl is a requested column value

adr is an alternative absolute address for positioning on the LCD. See LCD data sheets for actual addressing!

Example:

Locate 2, 3: Lcd n 'n will be printed in second row at position 3

Related topics:
LCD
Locate

Display
Cursor

6.70. Log

Description:
Calculates Natural Logarithm (base e).

Syntax:

var=Log (numeric expression)

Remarks:

118

FastAVR Basic compiler Manual

var receives a Natural Logarithm of numeric expression

numeric expression must be positive

Example:
Dim n As Float
Dim w As Word

w=12345
n=Log (w) 'n=9.421006E+01

Related topics:
Exp

Log10
Pow

6.71. Log10

Description:
Calculates base 10 Logarithm.

Syntax:

var=Logl0 (numeric expression)

Remarks:

var receives a Log10 of numeric expression

numeric expression

Example:
Dim n As Byte
Dim w As Word

w=12345
n=Logl0 (w) 'n=4.09149E+01

Related topics:
Exp

Log
Pow

6.72. Lookup

Look at Dim

6.73. Loop

119

FastAVR Basic compiler Manual

6.74. MakeWord

Description:
Makes Word or Integer from two bytes.

Syntax:

MakeWord (varl, wvar2)

varl MSB byte
var2 LSB byte

Remarks:
Very suitable for copying a portion of SRAM.

Example:

Dim n As Byte
Dim m As Byte
Dim w As Word

n=&h12
m=&h34

w=MakeWord (n, m) ' w=&hl1234

Related topics:
Msb

6.75. MemLoad

Description:
Quickly loads some SRAM locations.

Syntax:

MemLoad (var, constl, constl,...)

var SRAM will be loaded from var on.
constx constants to load with.

Remarks:
Very suitable for initializing variables in SRAM.

Example:
MemLoad (VarPtr(n), 4, 4, 4, 15, &hff, &hff)
MemLoad (&h90, "String constants also!", "Test")

Related topics:
MemCopy

120

FastAVR Basic compiler Manual

6.76. MemCopy

Description:
Quick SRAM block copy from Source locations to Destination.

Syntax:

MemCopy (varl, wvar2, var3)

varl number of bytes to copy
var2 we will copy from here - Source
var3 to here - Destination

Remarks:
Very suitable for copying a portion of SRAM.
Var2 and Var3 MUST be address (note that Strings "value" are already Addresses)!

Example:

MemCopy (12, VarPtr (Buffl), VarPtr (Buff2)) ' copies 12 Bytes from Buffl to
Buff2

Related topics:
MemlLoad

6.77. Mid

Description:
Return a specified number of characters in a string.

Syntax:

var=Mid (varl, nl, n2)

Remarks:

var string that Mid chars are assigned.

var1 source string (MUST be string var, not string constant).
n1 starting position of characters from left.

n2 number of characters.

Example:
Dim Name As String*15
Dim Part As String*10

Name="Mona Lisa"
Part=Mid (Name, 2, 5) 'Part="ona L"

Related topics:
Right
Left

121

FastAVR Basic compiler Manual

6.78. MSB

Description:

Returns the most significant byte of the Word var.

Syntax:

var=Msb (varl)

Remarks:
var byte variable that is assigned.
var1 word variable.

Example:
Dim n As Byte
Dim x As Word

n=x 'n holds Lsb byte of x
n=Msb (x) 'n holds Msb byte of x
Related topics:

MakeWord

6.79. Next

For

6.80. Nokey()
Key()

6.81. Nop

Description:

Generates one or more Nop assembler statements.

Syntax:
Nop [n]

Remarks:
n optional numeric for more Nops

Usefull for very short delays. Nop takes 1/Q seconds.

Example:
Nop ' generates 1 Nop
Nop 5 ' generates 5 Nops

122

FastAVR Basic compiler Manual

6.82. On x GoTo

Description:
Jumps to one of listed Labels or executes one of listed Subs, depending on value x.

Syntax:

On x GoTo LabelO, Labell, Label2.....
On x Sub0(), Subl(), Sub2/()

Remarks:

X is a test variable or expression.
LabelN labels to jumt to.
SubN subs to call.

Example 1:

On n GoTo Test, Labl, Label3
Back:

End
Test:

DoTest ()
GoTo Back

Labl:
DoSomething ()
GoTo Back

Label3:
DoOther ()
GoTo Back

Example 2:

On n Test (), Labl(), Label3()

End

Sub Test ()
DoTest ()
End Sub

Sub Labl ()
DoSomething ()
End Sub

Sub Label3 ()
DoOther ()
End Sub

Related topics:
Select

123

FastAVR Basic compiler Manual

6.83. Open COM

Description:
Opens up to four software UART channels.

Syntax:
Open Com=PORT.pin, speed [, Inv] For Input]|Output As #n

Remarks:

speed is the baud rate

n is Com number from 1 to 4
Inv option for inverted signal

Interrupts must be disabled during transmiting or receiving throu this software routins!

Example:

Open Com=PORTD.0, 9600 For Input As #1

Open Com=PORTD.1l, 9600 For Output As #1

Open Com=PORTD.2, 19200, Inv For Output As #2

Do

InputBin #1, a, 3 ' input three bytes thru Coml

Print #1, a; b; ¢ ' print vars on Coml

Print #2, "test" ' print inverted string constant on Com2
Loop

6.84. PcKey()

Description:
Returns a scan code of pressed key on standard AT-PC keyboard.

Syntax
var=PcKey ()

Remarks:
var contains the scan code of pressed key

Connected AT-PC keyboard works with Scan Code Set 3, so only one byte (make) is received! (default mode for
keyboard when connected to PC is Scan Code Set 2)
See file PCcode.pdf!

Note: PcKey function will pool CLOCK line until a scan code will be transmitted! This call can be used in External
interrupt routine if this is not acceptable (because some tasks in main loop must be proccessed).

Example:
PcKeySend (&hf9) ' turn autorepeat off
a=PcKey ()

Related topics:
PcKeySend()

124

FastAVR Basic compiler Manual

6.85. PcKeySend()

Description:
Send a command or data to standard AT-PC keyboard.

Syntax
PcKeySend (const)

Remarks:
const is a valid command or data

Connected AT-PC keyboard works with Scan Code Set 3, so, only one byte (make) is received! (default mode for
keyboard is Scan Code Set 2)
See file PCcode.pdf!

Scan codes select:

This two-byte command selects the scan code set. Scan code set 2 is selected by default after a reset. However,
scan code set 3 is selected by PCkey() init routine since set 3 is recommended for microcontroller applications.
Command: shfo

Command: «b000000xx

01:scan code set 1

10: scan code set 2

11:scan code set 3

Set all keys:

This commands assign attributes to the keys, as fallows:

Command: sht7 all keys have the repeat function (default is no repeat)

Command: «h£g all keys produce Make and Break codes

Command: «hf9 all keys produce only a Make code (no repeat)

Command: «hfa all keys have the repeat function and produce Make and Break code

This two-byte command controls the behavior of the LEDs.
Command: shED

Command: £b00000xxx

Bit 0: Scroll lock

Bit 1: Num lock

Bit 2: Caps lock

Reset Command: shff

Set Spermatic Rate/Delay:
Command: &hf3
Command: &bOxXXxxxxx

Bit6 Bit5 Delay

0 0 150ms
0 1 500ms
1 0 750ms
1 1 1 s

Bit4 Bit3 Bit2 Bitl Bit0 Autorepeat
0 0 0 0 0 30hz

0 1 1 1 1 8hz
1 1 1 1 1 2hz
Example:

PcKey()

125

FastAVR Basic compiler Manual

See also:

PcKey()

6.86. Peek

Description:
Reads a byte from internal or external SRAM.

Syntax:

var=Peek (varl)

Remarks:
var The string that is assigned.
var1 The address to read the value from.

Example:
Adr=&h70
n=Peek (Adr) ' read value from SRAM address &h70

Related topics:
Poke

Cpeek

6.87. Poke

Description:
Writes a byte to internal or external SRAM.

Syntax:

Poke (varl, wvar2)

Remarks:
var1 The address in internal or external SRAM.
var2 The value to be placed in SRAM.

Example:
Adr=&h70
Poke (Adr, 5) ' write 5 to SRAM address &h70

Related topics:
Peek

Cpeek

126

FastAVR Basic compiler Manual

6.88. Pow

Description:
Returns the Power of its argument.

Syntax:

var=Pow (numeric expression, exponent)

Remarks:

var type Float receives a Power of numeric expression
numeric expression any numeric type

exponent any numeric type

Example:
Dim n As Byte
Dim f1 As Float, f2 As Float

£f2=5.24
n="7

fl=Pow (f2, n) 'f1=1.084723E+05

Related topics:

BE

—
(@]
—
o

6.89. PowerModes

Description:
Forces processor into one of Power Saving Mode.

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR
provides various sleep modes allowing the user to tailor the power consumption to the application's requirements.

Note that not all PowerModes are available in each AVR device! Check datasheets!

Syntax:

Idle
PowerDown
PowerSave
Standby
ExtStandby

Remarks:
1dle CPU sleeps after this statement, but the Timers, Watchdog and Interrupt system continue to operate. This
power-saving mode is terminated with reset or when an interrupt is received.

powerDown CPU draws only a few micro amperes because the external oscillator is stopped. Only an external
reset, a watchdog reset, an external level interrupt or a pin change interrupt can wake up the CPU.

127

FastAVR Basic compiler Manual

PowerSave This mode is identical to PowerDown but the CPU can be also be awakened with Timer2.

Standby This mode is identical to Power-down with the exception that the Oscillator is kept running. From
Standby mode, the device wakes up in six clock cycles.

ExtStandby This mode is identical to Power-save mode with the exception that the Oscillator is kept running.
From Extended Standby mode, the device wakes up in six clock cycles..

Example:
PowerDown

6.90. Print

Description:
Send a variable or constant to the RS-232 port.

Syntax:

Print varl; var2;

Print2 wvarl; var2; ' for second UART
Remarks:

var1 variable or constant to print
var2 variable or constant to print

You can use a semicolon ; to print more than one variable on a line.
When you end a line with a semicolon, no linefeed will be added.

With the built-in terminal emulator, you can easily monitor print statements.

If SLeadChar is defined then result will be right justified with Leading Chars as defined. Also, if Format () is
defined then optional decimal point will be inserted!

Example:
Dim n As Byte, x As Word
Dim s As String*5

n=65: w=1234: s="Test"

Print n

Print w

Print s

Print n; w

Print "n="; n; "w="; w
Print Bcd (n)

Print Hex (w)

Print Chr (n)

Print2 n

End

Related topics:

128

FastAVR Basic compiler Manual

Input
PrintBin

[nputBin

6.91. PrintBin

Description:
Sends a binary value(s) to the serial port.

Syntax:

PrintBin varl; var2;...
PrintBin var, n

PrintBin2 wvarl; var2;... ' for second UART

Remarks:

var, vari, var2 byte or word sent to the serial port

n number of bytes to send from var up! With this statement you can send the whole SRAM byte by byte!

The number of bytes to send depends on the variable you use, 1 for byte, 2 for word.

Example:
Dim a As Byte, w As Word

a=5: w=&h3fl2

PrintBin a; w ' three bytes will be sent
PrintBin a, 12 ' 12 bytes will be sent (from a up)
PrintBin2 a; w ' three bytes will be sent

Related topics:

[nputBin

6.92. Pulse

Description:
Generates a pulse on the specified AVR port pin.

Syntax:

Pulse Port.pin, 0|1, var

Remarks:

0 pulse from 1 to 0 and back to 1

1 pulse from 0 to 1 and back to 0

var defines pulse length according to formula: t=(3*var+8)/clock
For clock 8MHz and var=1 pulse will be 1.375us.

AVR port pin must first be configured as output.

129

FastAVR Basic compiler Manual

Example:

Pulse PortB.2, 1, 10 'pulse pin high for 10.3us

'then return to low
Related topics:
Set
Reset

toaale

6.93. RadToDeg

Description:
Converts from Radians to Deegrees.

Syntax:
var=RadToDeqg (varl)

Remarks:
var The var that is assigned Deegrees.
var1 The Radians to convert.

Example:
Dim n As Byte
Dim f1 As Float, f2 As Float

£1=3.14159265
f2=RadToDeg (f1) ' £2=180

Related topics:

DegToRad
$Angles

6.94. RC5

Description:
Receives the Philips RC5 standard remote IR code.

Syntax:

Rcb5 (sysadr, command)

Remarks:
sysadr is a RC5 family address (Byte)
command is the code of the pressed key (Byte)

Sysadr and Command vars must be declared with Dim first!

TOGGLE BIT is sysadr.5
Command is six bits long, sysadr is five bits!

In case of bad reception RC5 returns 255 in Command, garbage in sysadr!

ATTENTION!

130

FastAVR Basic compiler Manual

Timer0 and OVFO interrupt are used. User can NOT use this timer and interrupt for other purposes!
User MUST enable global interrupts and Ovf0 interrupt!

Example:
Dim Adr As Byte
Dim Com As Byte

Enable Interrupts 'user must enable interrupts
Enable Ov£f0 'user must enable Timer0O overflow interrupt

Do

RC5 (Adr, Com)

Print Adr; " "; Com
Loop

Related topics:
$RC5

6.95. Randomize

Description:
Initialize Rnd generator

Syntax:
Randomize (seed)

Remarks:
seed is initial value for random generator, (numeric constant 0-255).

Rnd

6.96. ReadEE

Description:
Returns a value from internal EEPROM..

Syntax:
var=ReadEE (adr)

Remarks:
var holds a value previously stored in EEPROM at address adr.

Example:
WriteEE (i, 1) ' with counter (omit loc 0)
n=ReadEE (1)

Related topics:

WriteEE()
InitEE

131

FastAVR Basic compiler Manual

6.97. Reset

Description:
Resets the Bit variable, variable.bit, Port.pin, WatchDog timer or External interrupts flags.

Syntax:

Reset BitVar
Reset Var.bit
Reset PORT.pin
Reset WatchDog
Reset Intx

Remarks:
Port pin must first be configured as an output.

Example:
Reset b 'b is Bit var
RESet n.2 'n is byte var

SDef Led=PORTB.3
Set DDRB.2 'configured for output

Reset PORTB.2 'PortB=0
Reset Led

Set PORTb.2
Set Led

Reset WatchDog 'resets WatchDog
Reset Into 'resets Int0 flag

Related topics:
Set

Toqgle

6.98. Return

Description:
Defines from Function returned value.

Syntax:

Return numeric expression

Remarks:
Return is from Function returned value (Byte, Integer, Word or Long)

Example:

Declare Function Mul (a As Byte, b As Byte) As Byte
Dim n As Byte

n=Mul (5, 7) 'n=35

N N NNy

132

FastAVR Basic compiler Manual

Function Mul (a As Byte, b As Byte) As Byte
Return a*b

End Function

Related topics:
Declare
Function

Sub

6.99. Right

Description:
Return the rightmost n characters in a string.

Syntax:

var=Right (varl, n)

Remarks:

var string that right chars are assigned.

var1 source string (MUST be string var, not string constant).
n number of characters from the right.

Example:
Dim Name As String*15
Dim Part As String*10

Name="Mona Lisa"
Part=Right (Name, 4) 'Part="Lisa"

Related topics:

Left
Mid

6.100. Rnd

DDescription:

Returns a pseudo random number between 0 and 255 (type Byte).

Syntax:
var=Rnd ()

Remarks:
var variable that receives the random number

Example:
Randomize (5) 'initialize Rnd generator
n=Rnd ()

133

FastAVR Basic compiler Manual

Related topics:
Randomize

6.101. Rotate

Description:
Rotate variable left or right n number of places.

Syntax:
Rotate (left|right, wvarl, wvar2)
var3=Rotate (left|right, wvarl, var2)

Remarks:

varl is number of places to rotate

var2 is actual variable to be rotated

var3 is var to which rotated var2 is assigned

Example:

Rotate (Right, 1, n) 'rotates var n right one place

m=Rotate (Left, 4, n) 'rotates var n left four places and assign it to var m
Related topics:

Shift

6.102. Select

Description:

Selects a block of statements from a list, based on the value of an expression.

Syntax:
Select Case var
Case vall
statements
Case val2 To wval3
statements
Case <valid
statements
Case valb5, wval6, wval’
statements
Case Else
statements
End Select

Remarks:
var is a test variable (Byte, Integer or Word).
vall, val2, ... are different possible variable values.

134

FastAVR Basic compiler Manual

If one "Case" matches, no subsequent "Cases" will be tested !

The code lenght under one Case is limited to 64 words!

Examplet:
Select Case n
Case 32
Print "SPACE"
Case 13
Print "ENTER"
Case 65
Print "A"
Case 49
Print "1"
Case 50
Print "2"
Case 120
Print "X"

Case Else
Print "Miss!"
End Select

Example2:
Dim s As String*1l
Select Case s

Case "a", "A" ''a or A
Print "This is a or A"
Case llbll, llcll, lldll] b’ c or d

Print "others"
Case Else
Print "Miss!"
End Select

Related topics:
If

6.103. Set

Description:
Sets the Bit variable, variable.bit or Port.pin.

Syntax:

Set BitVar
Set Var.bit
Set PORT.pin

Remarks:
Port pin must first be configured as an output.

Example:
Set b 'b is Bit var
Set n.2 'n is byte var

135

FastAVR Basic compiler Manual

Set DDRB.2 'PORTB.2 is output

Set PORTB.2 'PORTB.2=1

Set Led 'sets PORT.bit defined as LED
Reset PORTB.2 'PORTB.2=0

Reset Led 'resets PORT.bit defined as LED
Related topics:

togale

Reset

6.104. Shift

Description:
Shift var left or right n number of places.

Syntax:
Shift (left|right, varl, var2)
var3=shift (left|right, varl, var2)

Remarks:

varl is number of places to shift

var2 is actual variable to be shifted

var3 is var to which shifted var2 is assigned

Example:

Shift (Right, 1, n) 'shift var n right one place

m=Shift (Left, 4, n) 'shift var n left four places and assign it to var m
Related topics:

Rotate

6.105. ShiftOut

Description:
ShiftOut variable(s) on a PORTx.pin, usually to fill shift registers.

Syntax:
ShiftOut wvarl; var2;....
ShiftOut varl, n

varl, var2 vars to be shifted out on port.pin defined by sshiftout
n number of bytes to shift out

Remarks:

Very suitable for expanding output ports by adding shift registers like 74HC4094, TIC 2965 etc.

136

FastAVR Basic compiler Manual

Example:
ShiftOut n, 10 'ShiftOut the whole array
ShiftOut i; w 'ShiftOut 1 and w

Related topics:

$ShiftOut
Shiftin

6.106. Shiftln

Description:
Shift IN variable on a Pinx.pin.

Syntax:
ShiftIn varl

var var to be shifted into from PINx.pin defined by $shiftout data

Example:
n=ShiftIn 'Load n from outher shift register

Related topics:

$ShiftOut
ShiftOut

6.107. Sin

Description:
Returns the trigonometric sine of its argument.

Syntax:

var=Sin (numeric expression)

Remarks:
var type Float receives a Sine of numeric expression
numeric expression can be in Radians or Deegrees, depending on $Angles metastatement!

Example:
Dim n As Byte
Dim f1 As Float

n=30 ' assuming $Angles=Degrees
f1=Sin (n) " £1=0.5000000

Related topics:

Cos

137

FastAVR Basic compiler Manual

Tan
Asin
Acos
Atan

6.108. Sinh

Description:
Returns the Sine Hiperbolicus of its argument.

Syntax:

var=Sinh (numeric expression)

Remarks:
var type Float receives a Sinh of numeric expression
numeric expression

Example:
Dim f1 As Float

f1=Sinh (5) '£1=74.20995

Related topics:
Cosh
Tanh

6.109. Sort

Description:
Sorts values in SRAM buffer.

Syntax:
Sort (SRAMbuff, length)

Remarks:

srRaMbuf f is name of Buffer in SRAM (starting address in SRAM)

length is number of bytes to Sort

Example:
Dim DB(16) As Byte

Sort (DB, 16) 'sorts 16 bytes in array DB

138

FastAVR Basic compiler Manual

6.110. Sound

Description:
Makes a sound.

Syntax:

Sound varl, var?2

varl * 10 is half of perioninus, f=1/(10 * var1 * 2) (frequency in Hz)
var2 * 10 is number of periods in sound (duration)

Example:

Sound 50, 100 'l kHz beep, 1 sec in duration
Sound 25, 100 '2 kHz beep, 0.5 sec in duration
Related topics:

$Sound

6.111. Spiln

Description:
Receives a value from the SPI-bus in SLAVE mode.

Syntax:
var = Spiln
var variable to receive data from the SPI bus

Remarks:
SS pin is input and must be driven by MASTER!

Example:
n=Spiln

Related topics:
SPI0ut

6.112. SpiOut

Description:
Sends the value of a variable to the SPI-bus in MASTER mode.

Syntax:

SpiOut wvar

SpiOut varl; var2;....,wait
SpiOut varl, n, wait

var, var1, var2 variables to be shifted out
n number of bytes from SRAM to send via SPI bus, starting with var1

139

FastAVR Basic compiler Manual

Remarks:
SS pin is set to OutPut (user can use this pin to select SLAVE)!

Example:
SpiOut i 'ShiftOut i (9)
SpiOut n; 10, Wait 'ShiftOut the whole array

Related topics:
SPlin

6.113. Sqr

Description:
Calculates Float Square of its argument.

Syntax:

var=Sgr (numeric expression)

Remarks:
var Float, receives a Square of numeric expression
numeric expression

Example:
Dim f1 As Float
Dim f2 As Float

£1=12.345

£2=8Sqr (f1) " f2=f1%£f1=152.399
Related topics:

Pow

Sart

6.114. Sqrt

Description:
Calculates Square root.

Syntax:

var=Sgr (numeric expression)

Remarks:
var receives a Square root of numeric expression
numeric expression must be positive

Example:
Dim n As Byte
Dim w As Word

140

FastAVR Basic compiler Manual

w=12345
n=sqgrt (w) 'n=111

6.115. Start

Description:
Starts or enables one of the specified devices.

Syntax:
Start device
Start Adc [, Vref=Ext|Int|Vcc]

Remarks:
device can be:
ade supply for AD converter (default is stopped), user can specify type of used Vref!
nc supply for analog comparator (default is started)
WatchDog
Timer0, Timerl, Timer2

Example:

Start Ac

Start Adc, Vref=Int
Start WatchDog
Start Timerl

switch supply to Ac

switch supply to Adc, Internal (2.56V) Vref is used
enables WatchDog

start Timerl

Related topics:
Stop

6.116. Stop

Description:
Stops or disables one of the specified devices.

Syntax:

Stop device

Remarks:
device can be:
ade supply for AD converter (default is stopped)

nc supply for analog comparator (default is started)
WatchDog
Timer0, Timerl, Timer2

Example:

141

FastAVR Basic compiler Manual

Stop Ac

Stop Adc

Stop WatchDog
Stop Timerl

switch supply from Ac
switch supply from Adc
disables WatchDog
stops Timerl

Related topics:
Start

6.117. Str

Description:
Converts a number to a string.

Syntax:

var=Str (numeric expression)

Remarks:
var string variable

If sLeadChar is defined then result will be right justified with Leading Char as defined. Also, if Format () is defined
then optional decimal point will be inserted!

Example:
Dim n As Byte
Dim s As String*5

n=123
s=Str (n) 's="123"

Related topics:
Val

6.118. Sub

Description:
Defines a subroutine procedure.

Syntax:
Sub NameOfSub (parameters list)

Remarks:
NameOfSub is the name of the subroutine
parameters list is the name and type of parameters, comma delimited (can not be Bit)

Sub must first be declared using the Declare keyword (names of passing parameters must be the same as later in
Sub).

Example:

142

FastAVR Basic compiler Manual

Declare Sub Test (a As Byte, b As Byte) 'declares a Sub Test
Test (2, 6) '22 will be Printed
End

YL S
Sub Test (a As Byte, b As Byte)

Local d As Byte ' local var is declared
d=10
[Exit Sub] ' optionally exit from Sub

Print a*b+d
End Sub ' here is end of Sub

Related topics:
Declare
Function

6.119. Swap

Description:
Swaps variable(s), depending on type of variable.

Syntax:
Swap (var)
Swap (varl, var2)

Remarks:
var if var is Byte then nibles will be swaped, if var is Word or Integer then bytes will be swaped.
var1 this variable will be swaped with var2

Example:
Dim a As Byte, b As Byte
Dim w As Word

a=&h25

b=&h34

Swap (a) ' a=&h52
w=&h1234

Swap (w) ' w=&h3412

Swap (a, b) ' a=&h34, b=&h25

143

FastAVR Basic compiler Manual

6.120. Tan

Description:
Returns the trigonometric Tangent of its argument.

Syntax:

var=Tan (numeric expression)

Remarks:
var type Float receives a Tangent of numeric expression
numeric expression can be in Radians or Deegrees, depending on $Angles metastatement!

Example:
Dim n As Byte
Dim f1 As Float

n=30 ' assuming $Angles=Degrees
fl=Tan (n) ' £1=0.5773503

Related topics:
Sin

Cos

Asin

Acos

Atan

6.121. Tanh

Description:
Returns the Tangent Hiperbolicus of its argument.

Syntax:

var=Tanh (numeric expression)

Remarks:
var type Float receives a Tanh of numeric expression
numeric expression

Example:
Dim f1 As Float

fl1=Tanh (5) '£1=0.999909
Related topics:

Sinh
Cosh

144

FastAVR Basic compiler Manual

6.122. Toggle

Description:
Toggles the state of an AVR port pin.

Syntax:
Toggle PORT.pin

Remarks:
AVR port pin must first be configured as an output.

Example:
Toggle PORTB.2 'toggles PortB.2
Toggle Led 'toggles Port.Pin named Led (defined using $Def)

Related topics:
Set
Reset

6.123. UCase

Description:
Returns an all-uppercase version of its string argument.

Syntax:

var=UCase (varl)

Remarks:
var uppercase string version of var1
vari original string variable.

Example:
Dim Name As String*15
Dim Part As String*10

Name="Mona Lisa"
Part=UCase (Name) 'Part="MONA LISA"

Related topics:
LCase

6.124. Val

Description:
Returns the numeric equivalent of a string.

Syntax:

var=Val (string)

145

FastAVR Basic compiler Manual

Remarks:
var variable to store the string value.
string string variable

Example:
Dim s As String * 8
Dim n As Byte

s="123" 'init string
n=val (s) 'n=123
Related topics:

Str

6.125. VarPir

Description:
Returns the SRAM or XRAM address of a variable (pointer).

Syntax:

varl=VarPtr (var?2)

Remarks:

vari variable that will pointing to var2.
var2 variable to retrieve the address from.

Var1 mast be declared as word for devices with more than 256 bytes of SRAM!

Example:

Dim n As Byte 'global byte variable named a

Dim w As Word 'global word variable named w

Dim f As Float 'global word variable named w

Dim db(10) As Byte 'global array of ten bytes named n
Dim sl As String * 8 'global string variable named sl, length must be specified
adr=VarPtr (n) 'adr=&ho0

adr=VarPtr (w) 'adr=&ho6l

adr=VarPtr (f) 'adr=&ho63

adr=VarPtr (db) 'adr=&ho7

adr=VarPtr (sl) 'adr=&h71

6.126. Wait, Waitms, Waitus

Description:
Waits seconds, milliseconds or microseconds*10.

Syntax:
Wait var - waits var seconds
WaitMs var - waits var milliseconds

146

FastAVR Basic compiler Manual

WaitUs var - waits var microseconds*10

Remarks:
var - Byte vartype

Wait, WaitMs and WaitUs are not very precise, especially waitUs at lower values!

All enabled Interrupts are active during Waiting!

Example:

Wait 2 ' waits 2seconds
WaitMs 25 ' waits 25ms
WaitUs 3 ' wait 30us

6.127. Wend

6.128. While

Description:

Executes a series of statements as long as a given condition is True.

Syntax:
While integer expression
statements

Exit While 'you can EXIT from the loop at any time

Wend

Remarks:

condition is a boolean expression that evaluates to True or False.

If condition is True, all statements are executed until the Wend statement is encountered. Control then returns to
the While statement and the condition is checked again. If condition is still True, the process is repeated, otherwise

execution resumes with the statement following the Wend statement.

Example:

While i<6 ' for all ADC inputs
Print Adc8 (1)
Incr i

Wend

Example:

Do-Loop
For-Next

147

FastAVR Basic compiler Manual

6.129. WriteEE

Description:
Writes a value into internal EEPROM at location adr.

Syntax:

WriteEE (adr, var [, varl, var2,...varnl])

Remarks:

adr the address in EEPROM that var will be stored at. (adr can be a constant, variable or expression)
var must be variable or const to be stored in EEPROM at address adr.

var1-n can be expressions or constants to initialize EEPROM starting at address adr.(must be Bytes)

Example:
ReadEE

See also:
ReadEE
InitEE

148

FastAVR Basic compiler Manual

1. INTRODUCTIONceeciiiiiiiiinemrniissssssss s ssssssssssn s s ss s ssssss s sa s smsmn s s sessssmmn s s aeassannnnnnsssssssnnnnns 2
1.1. Compiler Operating System Compatibility 2
1.2. AVR chip supported 3
1.3. Development Environment 4
2. FASTAVR LANGUAGE REFERENCEcccooommmiiniemenn i insssn s ssmsss s s ssssmss s snsssanas 5
2.1. Source code / File Data 5
2.2. Source code - Structure 5
2.3. Statements - multiple per line 5
2.4. Comments 6
2.5. Names - Symbols 6
2.6. Types 7
2.6.1. FastAVR 1anguage GENETalcocooouiiiiiiiiiiii et e s s e s e s s 7
2.6.2. TYPE COMVETSIONSeutieiieitie ettt eette et ee ettt e stte et e ettt etteeabeeeuteeatteea bt e aate e st e e bt esaseenseeensaesaseesabeensaesabeesabeanseesaneessbeenseeeanes 7
2,63, TYPES ATTIIMELIC ..ottt ettt et ea st et ea ettt ea st ebeea e s e ea e s ae st ea e ae e ea e sa e e enesae e snennens 8
2.6.4. ASSIZNING STALEINEIIES ...c..eeiuiiiiie ettt ettt ettt et e ettt e etteetee ettt e st teeabteeabeesateea bt e e bt esaseenseeensbenaseesabeenseeenseesabeenseeenseesanes 9
2.7. Constants 10
2.7.1. CONSLANLS = SCOPE.....cuviiiiieiiiiiiiiet ettt ettt sttt s s h e e ab e sas e e e aae s heeab e eae e st e be st e be et e st e sae e s et esaeeane e 10
2.7.2. Constants- Numbers and Their SYNTAXcoioiioiiiiiiiiiieeiee ettt et e ettt et et e st e it e e sbeesseesaeeesbeeenne 10
2.7.3. Constants, Arithmetic - DECIATIIEevvirtiirierieiieie ettt et ettt e et e bt sttt e st e et e st e sbeenee e 11
2.7.4. Constants, Arithmetic Arrays - DECIATINZ.oueeiiiiiiiiiieee ettt ettt ettt et e e sbe e s e e saeeesbeeeaee 11
2.7.5. COMSEANES, SETITIZ . c..veuveeuteeititteteeit ettt ettt et et et e e e sheesbeeb b e st e eatesheesheesbeebbenbeeabesbeen bt eut e bt enbesat e bt ensesatenseenbennteseennenne 12
2.7.6. CONSLANES, STHNGZ ATTAYSeviventetiteteetintete st este st ess e e ste s et esaesaessesse st essessessessesse s essensensensensensensensensensensensennensennes 12
2.8. Variables 13
2.8.1. VarIabIes = SCOPC....eeuieuiiiieiietcteietet ettt ettt ettt et ettt e et e s st e st e et e s s s et et a et ess et et e s s et ennens 13
2.8.2. Variables, Arithmetic - DECIATINEcoeouiiiiieiieeit ettt sttt sate et ee st e stbeesatesabeesabeesaeeenbeesnseens 13
2.8.3. Variables, Arithmetic - Run-time Type CONVEISIONS:cc.ecveueieieieieieteieieeenrereeesteseeseesseseeeessesaeseesnesseseennens 14
2.8.4. Variables, ATTNIMELIC = ATTAYSceeuiitieeiierieeite et ettt et e et e et e e bt e e bt esteesheeesttesateesuseetaesabeesabeanseesaseesaseensneenseesseens 14
2.8.5. VATTADIES, SIIINE ..o.neeeiiieiiiit ettt ettt et e e et e et e e bt e e bt e e st eesheeebeesat e shbeentaesabeeshbeanseesaseesabeenneeabeesnseans 14
2.8.6. Variables, StING ATITAYS.....cc.couiiiiiirieieietee ettt ettt ettt et et es et e s e s et es s e s e st essese st esseseseensessentennenseneennens 15
2.9. Declarations - Procedures and Functions 16
2.9.1. Declaring PrOCEAUIESc.euiriiiiieiecteent ettt ettt st ense s e e ennennenee 16
2.9.2. DEeClaring FUNCLOMNSeoiuiiiiie ettt ettt ettt et et e e bt e st eesheeebeesabeesabeebeesaseeshbeenstesaseesabeenneenseesnseens 17
2.9.3. DecClaring INTEITUPLSc.eiiiieiiieieiet ettt ettt ettt ettt e e s et es s e s et esse s et es s e s eneensesaeneennenseneennens 18
2.10. Statements 18
2.10.1. Statements, Arithmetic EXPIESSIONScceruiiiiiiiiiiiieitieitiee sttt ee sttt ettt e stte et et e s ste e st e e saeesbeeenseesabeebeeenbeesnseennees 18
2.10.2. Statements, String EXPIESSIONScc.ecuiiiiiiiieieieieiiee ettt ettt ettt s et s st e a et esse e e e esnenneeennens 19

149

FastAVR Basic compiler Manual

2.11. Program Flow 19
2. 11,1, Statement, DO = LLOOP .. .uiiiie ettt ettt ettt e b e et a bttt e bt e e bt e et e e eat e e bte et e e eateebteeabeeeateenneas 19
20 B BN 72101 0 1= 0 L4 o VO CSI A 1 1S5 § DR RPN 20
20 B I TN #2155 11 =3 0 SR 210 w5 q RS PRORURRRON 20
P I B N ¥ 173 1 =) 1L Al TR RPRTN 21
2 B TN #2115 11 =) 1 LN 1) (T o A O 1Y USROS 22
0 B BTN 2103 1113 1 A {0 1o J PP SRRRN 23
P20 B DR BN 1731 =) 1 LA @) 1 10 G € 10 1o R RURN 23
2.11.8. Statement - ON X SUD() ...uvieeeiiieieiiie ettt ee ettt e ettt e ettt e et te e st eeee bt ee s asteeesnsaeesnseeaensaeeaaseeeeanseaesansaeesnsaeenn 24

2.12. Compiler and Limitations 25

2.13. Language Specific 25

2.14. Interrupts 30

2.15. Outputs 33

2.16. Memory Usage 33

2.17. Assembler Programming 34

3. FASTAVRIIDE oo eoeeiiiieeeeiir s rese s s s s s s e s e s s e m s e e e s mma s e e s e mmnn s s e e s e nmma s e e e s nnnnnnnas 35

3.1. Editor 35

3.2. IDE 37

3.3. Keyboard Commands 38

3.4. Mouse Use 39

4. [NS I NV = SR 10 10 T O 40

4.1. AVR Studio 40

4.2. LCD Character Generator 40

4.3. Terminal Emulator 41

4.4. AVR Calculator 42

4.5. Programmer 43

5. AVR FUNDAMENTScetiiiiiimmeiiiiiessesssrrrsmsassss e s s s s nsssss s e s s s mmnssss e e s s nnnssssssssnnnnsssnssesnnnnnnnns 44

6. FASTAVR KEYWORDS......cooteciiiiiieeemeirirssse s s s s sssmssss s ss s snmnssssssssnnnnssssssssnnnsssssessnnnnnsnns 45

6.1. Meta - Statements 45
6.1.1. COMPILET QITECEIVES ...t euie ittt ettt ettt ettt e st e eat e et te et eeeateebteeabeeeabeeasteeabeeesbeensteenbeesaseensteenbeennseesueeenseennne 45

6.1.1.1. BANZIES ..ottt ettt ettt ettt s s e A AR s eE R e A A AR e e ee e tA ettt ea e n ettt ettt 45
6.1.1.2. BASIIL ..o ettt ettt ettt ettt et et et eeae e et eteeae et ete et eeteete et enaeete et anaean 46
6.1.1.3. SINCIUAE ..ottt e et e e et e et e e e eaaaeeesaaeeseaaate s asaeesamsaeesansaeesasseesanseeesenaaeesnaaessnnseesannes 46

FastAVR Basic compiler Manual

6.1.1.4. SINCIUAEASIN ...ttt
6.1.1.5. BSOUICE ..ttt ettt st sbe bbb saens
6.1.2. Processor Configuration............c.coeueirieeeieenieenie e
6.1.2.1. SBAU ...
6.1.2.2. FCIOCK -t
6.1.2.3. BDIEVICE ..ttt ettt ettt ettt ettt ettt ettt
6.1.24. BSHACK e
6.1.3. I/O Configuration.........cocueevueerie ittt
6.1.3.1. BDES .t
6.1.3.2. STWILE .t st eaens
6.1.3.3. SDTIME ..ottt s enen
6.1.34. BI2C e et
6.1.3.5. B EY ettt
6.1.3.6. SLEAadCRAr..........cciiiiieiiieiee ettt s
6.1.3.7. B e ettt
6.1.3.8. BPCKEY ..ottt
6.1.3.9. BRECS ettt enen
6.1.3.10. SSHIfEOUL.....ouiiieiieiieiceee e
6.1.3.11. $S0UNd ...ceiiiiiiiiiiieiieeeceeteee e
6.1.3.12. B Pttt et
LT 0 T8 0 N I 4 SRS
6.1.3.14. SWatChDOZ ...c.ecviviiiiiiieiiciteecetcte ettt

6.2. HD61202, KS0108B and SEP1520 Graphic LCD support

6.2.1. GENEIAL......ooo i
6.2.2. SGLCD, SGCIIL ..ottt e
6.2.3. 331 | DTSSR
6.2.4. FONESEL ..o
6.2.5. GCIS ettt ettt e e e e e aeeaeas
6.2.6. GIC ot e e e
6.2.7. GICAINI ..t e et e e e eaaaae e e e eean
6.2.8. GREAA ...
6.2.9. GWIILE .ot eeee e e et e e e et ae e e e e eetaraeaeeeeees
6.2.10. IMESEl...uiiiiiiiiiiiiiic e
0.2. 11, IIIVEISC.uuuuriiiieieeetieeee e ettt eeete e e e eeete e e e e eeesreaeeeeeeearraeaeeeeenrnns
0.2.12. LINEH e
0.2.13. LINEV it
0.2. 14, POINt..ccoiiiiiiii ettt ee et e e e e eeare e e e e eeearrae e e e e eeaaraes
0.2, 15, PSSl e e e e e e eearaes

6.3. PCD8544 - NOKIA 3310

6.3.1. GENEIAL.......oo i
6.3.2. SGLECD ..ottt
6.3.3. COMITASEvtveieeeeeeeettreee e eeeetre e e eeeeere e e e eeeeaaeareeeeeeearaeseeesensarreseeenens
6.3.4. FONESE ...
6.3.5. GIC oo
6.3.6. (€175 1 £ PSTRN
6.3.7. TMESEL i
6.3.8. INVETSC ... e et e et e e eeean
6.3.9. GCLS et
6.4. T6963C Graphic LCD support
6.4.1. SGLCD, SGCHL...cvviivieiie et
6.4.2. 2703 SRR
6.4.3. CHICLE o e et e e e etarae e e e eeean
6.4.4. FALL et

151

FastAVR Basic compiler Manual

6.4.5. FONESEL ...ttt ettt ettt ——aiaaaaaas 74
6.4.6. (€13 F USROS RRRUSRRTURRRRRRRRTRt 74
6.4.7. GOIMIMANG......eeeii ettt eeee e e ee ettt e e e eeeetaeaeeeeeeeeataaaeeeeeeesasaeseeeeensssasaeseeeessasasaeseesaesassseseseenssreseeesennnrrees 75
6.4.8. (€ (011 7Yoo 75
6.4.9. (€15 1155 21 DU U UTRUSR TRt 76
(X O T €) 7T« KPP STRRN 76
(O3 O R €5 (< § 13 PO SRRRN 77
(X R €] 3= Ve IR PPRTN 77
6.4.13. GIPATECASELutiiiiiiiiii ettt s h e e s h e e s h e e a e e ae e sh b e 78
6.4.14. GIPHOMESEE ...ttt b et s ae s s h e e et sae e b sat bbbt e e et 78
(X S TR € A7/ v 1 £ PO TRRN 79
B.4.10. TIESL...iiiiiiieiie ettt et et e et e e st ea et ea s e st es e aa et ens et s et e an et ennens 79
0.4, 17, IIIVEISC. . uureiieeie ettt e e eeete e et ee et e e e e et e tteeeeeeeeetataeaeeeeeaataaeaeaeeeensasasaeeeeaasaaeseaeeeenbaeaeaeeeeeabaaeaeeeeeaabarraeeeeenarreaeeeeaants 80
(O3 T 51 - SRR RPRTRN 81
(X L R 511 1<) G (PSRN 81
(O3 O B 1 1=V TSR PPRRRN 82
(O3 S oo 1 1| S SRS RRRN 82
(X o SRR PPRRN 83
(3 T Kol 1 TR PPRRN 83
(X S N 7T« WSRO 83
(X A T B < 72N (=Y: N T RS URROTRRRON 84
(X TS b 1 5 (6 1 T 11 SRS RRRN 84
6.5. 1WWrite 85
6.6. 1WReset 85
6.7. 1WRead 86
6.8. Abs 87
6.9. Ac 87
6.10. Acos 87
6.11. Adc 88
6.12. Asc 88
6.13. Asin 89
6.14. Atan 90
6.15. Atan2 90
6.16. Baud 91
6.17. Bed 92
6.18. BitWait 92
6.19. Case 93
6.20. Chr 93
6.21. Const 93

152

FastAVR Basic compiler Manual

6.22.

6.23.

6.24.

6.25.

6.26.

6.27.

6.28.

6.29.

6.30.

6.31.

6.32.

6.33.

6.34.

6.35.

6.36.

6.37.

6.38.

6.39.

6.40.

6.41.

6.42.

6.43.

6.44.

6.45.

6.46.

6.47.

6.48.

6.49.

Cls 94
Cos 94
Cosh 95
CPeek 95
Crc8 95
Cursor 96
Data 96
Declare 96
Decr 97
DefLcdChar 97
Dim 98
Disable 99
Display 100
DegToRad 100
Do 101
DTMF 101
Enable 102
End 103
Exit 103
Exp 103
Find8 104
Find16 104
For 105
Format 105
Fract 106
FromBced 107
Function 107
GoTo 108

153

FastAVR Basic compiler Manual

6.50. I2CRead 108
6.51. I2CStart 108
6.52. 12CStop 110
6.53. I2CWrite 110
6.54. If 110
6.55. Incr 111
6.56. InitLcd 111
6.57. InitEE 112
6.58. Input 112
6.59. InputBin 113
6.60. Int 113
6.61. IntX 114
6.62. Instr 114
6.63. Key() 115
6.64. LCase 115
6.65. Led 116
6.66. Left 116
6.67. Len 117
6.68. Local 117
6.69. Locate 118
6.70. Log 118
6.71. Log10 119
6.72. Lookup 119
6.73. Loop 119
6.74. MakeWord 120
6.75. MemLoad 120
6.76. MemCopy 121
6.77. Mid 121

154

FastAVR Basic compiler Manual

6.78.

6.79.

6.80.

6.81.

6.82.

6.83.

6.84.

6.85.

6.86.

6.87.

6.88.

6.89.

6.90.

6.91.

6.92.

6.93.

6.94.

6.95.

6.96.

6.97.

6.98.

6.99.

6.100.

6.101.

6.102.

6.103.

6.104.

6.105.

MSB 122
Next 122
Nokey() 122
Nop 122
On x GoTo 123
Open COM 124
PcKey() 124
PcKeySend() 125
Peek 126
Poke 126
Pow 127
PowerModes 127
Print 128
PrintBin 129
Pulse 129
RadToDeg 130
RC5 130
Randomize 131
ReadEE 131
Reset 132
Return 132
Right 133
Rnd 133
Rotate 134
Select 134
Set 135
Shift 136
ShiftOut 136

155

FastAVR Basic compiler Manual

6.106.

6.107.

6.108.

6.109.

6.110.

6.111.

6.112.

6.113.

6.114.

6.115.

6.116.

6.117.

6.118.

6.119.

6.120.

6.121.

6.122.

6.123.

6.124.

6.125.

6.126.

6.127.

6.128.

6.129.

ShiftIn 137
Sin 137
Sinh 138
Sort 138
Sound 139
Spiln 139
SpiOut 139
Sqr 140
Sqrt 140
Start 141
Stop 141
Str 142
Sub 142
Swap 143
Tan 144
Tanh 144
Toggle 145
UCase 145
Val 145
VarPtr 146
Wait, Waitms, Waitus 146
Wend 147
While 147
WriteEE 148
... 149

156

FastAVR Basic compiler Manual

Notes:

157

